Categories
erwin Expert Blog

Data Modeling in a Jargon-filled World – NoSQL/NewSQL

In the first two posts of this series, we focused on the “volume” and “velocity” of Big Data, respectively.  In this post, we’ll cover “variety,” the third of Big Data’s “three Vs.” In particular, I plan to discuss NoSQL and NewSQL databases and their implications for data modeling.

As the volume and velocity of data available to organizations continues to rapidly increase, developers have chafed under the performance shackles of traditional relational databases and SQL.

An astonishing array of database solutions have arisen during the past decade to provide developers with higher performance solutions for various aspects of managing their application data. These have been collectively labeled as NoSQL databases.

Originally NoSQL meant that “no SQL” was required to interface with the database. In many cases, developers viewed this as a positive characteristic.

However, SQL is very useful for some tasks, with many organizations having rich SQL skillsets. Consequently, as more organizations demanded SQL as an option to complement some of the new NoSQL databases, the term NoSQL evolved to mean “not only SQL.” This way, SQL capabilities can be leveraged alongside other non-traditional characteristics.

Among the most popular of these new NoSQL options are document databases like MongoDB. MongoDB offers the flexibility to vary fields from document to document and change structure over time. Document databases typically store data in JSON-like documents, making it easy to map to objects in application code.

As the scale of NoSQL deployments in some organizations has rapidly grown, it has become increasingly important to have access to enterprise-grade tools to support modeling and management of NoSQL databases and to incorporate such databases into the broader enterprise data modeling and governance fold.

While document databases, key-value databases, graph databases and other types of NoSQL databases have added valuable options for developers to address various challenges posed by the “three Vs,” they did so largely by compromising consistency in favor of availability and speed, instead offering “eventual consistency.” Consequently, most NoSQL stores lack true ACID transactions, though there are exceptions, such as Aerospike and MarkLogic.

But some organizations are unwilling or unable to forgo consistency and transactional requirements, giving rise to a new class of modern relational database management systems (RDBMS) that aim to guarantee ACIDity while also providing the same level of scalability and performance offered by NoSQL databases.

NewSQL databases are typically designed to operate using a shared nothing architecture. VoltDB is one prominent example of this emerging class of ACID-compliant NewSQL RDBMS. The logical design for NewSQL database schemas is similar to traditional RDBMS schema design, and thus, they are well supported by popular enterprise-grade data modeling tools such as erwin DM.

Whatever mixture of databases your organization chooses to deploy for your OLTP requirements on premise and in the cloud – RDBMS, NoSQL and/or NewSQL – it’s as important as ever for data-driven organizations to be able to model their data and incorporate it into an overall architecture.

When it comes to organizations’ analytics requirements, including data that may be sourced from a wide range of NoSQL, NewSQL RDBMS and unstructured sources, leading organizations are adopting a variety of approaches, including a hybrid approach that many refer to as Managed Data Lakes.

Please join us next time for the fourth installment in our series: Data Modeling in a Jargon-filled World – Managed Data Lakes.

nosql

Categories
erwin Expert Blog

Why the NoSQL Database is a Necessary Step

 The NoSQL database is gaining huge traction and for good reason.

Traditionally, most organizations have leveraged relational databases to manage their data. Relational databases ensure the referential integrity, constraints, normalization and structured access for data across disparate tools, which is why they’re so widely used.

But as with any technology, evolving trends and requirements eventually push the limits of capability and suitability for emerging business use cases.

New data sources, characterized by increased volume, variety and velocity have exposed limitations in the strict relational approach to managing data.  These characteristics require a more flexible approach to the storage and provisioning of data assets that can support these new forms of data with the agility and scalability they demand.

Technology – specifically data – has changed the way organizations operate. Lower development costs are allowing start ups and smaller business to grow far quicker. In turn, this leads to less stable markets and more frequent disruptions.

As more and more organizations look to cut their own slice of the data pie, businesses are more focused on in-house development than ever.

This is where relational data modeling becomes somewhat of a stumbling block.

Rise of the NoSQL Database

More and more, application developers are turning to the NoSQL database.

The NoSQL database is a more flexible approach that enables increased agility in development teams. Data models can be evolved on the fly to account for changing application requirements.

This enables businesses to adopt an agile system to releasing new iterations and code. They’re scalable and object oriented, and can also handle large volumes of structured, semi-structured and unstructured data.

Due to the growing deployment of NoSQL and the fact that our customers need the same tools to manage them as their relational databases, erwin is excited to announce the availability of a beta program for our new erwin DM for NoSQL product.

With our new erwin DM NoSQL option, we’re the only provider to help you model, govern and manage your unstructured cloud data just like any other traditional database in your business.

  • Building new cloud-based apps running on MongoDB?
  • Migrating from a relational database to MongoDB or the reverse?
  • Want to ensure that all your data is governed by a logical enterprise model, no matter where its located?

Then erwin DM NoSQL is the right solution for you. Click here to apply for our erwin DM NoSQL/MongoDB beta program now.

And look for more info here on the power and potential of  NoSQL databases in the coming weeks.

erwin NoSQL database