Categories
erwin Expert Blog

Digital Transformation Examples: Three Industries Dominating Digital Transformation

Digital transformation examples can be found almost anywhere, in almost any industry. Its past successes – and future potential – are well documented, chronicled in the billion-dollar valuations of the frontrunners in the practice.

Amazon began as a disruptor to brick-and-mortar bookstores, eventually becoming one of the most obvious digital transformation examples as it went on to revolutionize online shopping.

Netflix’s origins were similar – annihilating its former rival Blockbuster and the entire DVD rental market to become a dominant streaming platform and media publisher.

Disruption is the common theme. Netflix decimated the DVD rental market while Amazon continues to play a role in “high-street” shopping’s decline.

As technology continues to disrupt markets, digital transformation is do or die.

According to IDC’s digital transformation predictions report for 2019, these types of initiatives are going to flood the enterprise during the next five years.

The following three examples highlight the extent to which digital transformation is reshaping the nature of business and government and how we – as a society – interact with the world.

Digital Transformation in Retail

The inherently competitive nature of retail has made the sector a leader in adopting data-driven strategy.

From loyalty cards to targeted online ads, retail has always had to adapt to stay relevant.

Four main areas in retail demonstrate digital transformation, with a healthy data governance initiative driving them all.

Digital transformation examples

With accurate, relevant and accessible data, organizations can address the following:

  • Customer experience: If your data shows a lot of abandoned carts from mobile app users, then that’s an area to investigate, and good data will identify it.
  • Competitive differentiation: Are personalized offers increasing sales and creating customer loyalty? This is an important data point for marketing strategy.
  • Supply chain:Can a problem with quality be related to items shipping from a certain warehouse? Data will zero in on the location of the problem.
  • Partnerships:Are your partnerships helping grow other parts of your business and creating new customers? Or are your existing customers using partners in place of visiting your store? Data can tell you.

This article further explores digital transformation and data governance in retail.

Digital Transformation in Hospitality

Hospitality is another industry awash in digital transformation examples. Brick-and-mortar travel agencies are ceding ground to mobile-first (and mobile-only) businesses.

Their offerings range from purchasing vacation packages to the ability to check in and order room service via mobile devices.

With augmented and virtual reality, it even may be possible to one day “test drive” holiday plans from the comfort of the sofa – say before swimming with sharks or going on safari.

The extent of digitization now possible in the hospitality industry means these businesses have to account for and manage an abundance of data types and sources to glean insights to fuel the best customer experiences.

Unsurprisingly, this is yet another area where a healthy data governance initiative can be the difference between industry-disrupting success and abject failure.

This piece further discusses how data is transforming the hospitality industry and the role of data governance in it.

Digital Transformation in Municipal Government

Historically, municipal government isn’t seen as an area at the forefront of adopting emerging technology.

But the emergence of “smart cities” is a prominent example of digital transformation.

Even the concept of a smart city is a response to existing digital transformation in the private sector, as governments have been coerced into updating infrastructure to reflect the modern world.

Today, municipal governments around the world are using digital transformation to improve residents’ quality of life, from improving transportation and public safety to making it convenient to pay bills or request services online.

Of course, when going “smart,” municipal governments will need an understanding of data governance best practices.

This article analyzes how municipal governments can be “smart” about their transformation efforts.

Mitigating Digital Transformation Risks

Risks come with any investment. But in the context of digital transformation, taking risks is both a necessity and an inevitability.

Organizations also will need to consult their data to ensure they transform themselves the right way – and not just for transformation’s sake.

A recent PwC study found that successful digital transformation risk-takers “find the right fit for emerging technologies.”

Doing so points to the need for both effective data governance to find, understand and socialize the most relevant data assets and healthy enterprise architecture to learn what systems and applications create, store and use those data assets.

With application portfolio management and impact analysis, organizations can identify immediate opportunities for digital transformation and areas where more consideration and planning may be necessary before making changes.

As the data governance company, we provide data governance as well as enterprise architecture software, plus tools for business process and data modeling, data cataloging and data literacy. As an integrated software platform, organizations ensure IT and business collaboration to drive risk management, innovation and transformation efforts.

If you’d like to learn more about digital transformation and other use cases for data governance technologies, stay up to date with the erwin Experts here.

erwin Expert Blog Subscribe

Categories
erwin Expert Blog

Enterprise Architecture and Business Process: Common Goals Require Common Tools

For decades now, the professional world has put a great deal of energy into discussing the gulf that exists between business and IT teams within organizations.

They speak different languages, it’s been said, and work toward different goals. Technology plans don’t seem to account for the reality of the business, and business plans don’t account for the capabilities of the technology.

Data governance is one area where business and IT never seemed to establish ownership. Early attempts at data governance treated the idea as a game of volleyball, passing ownership back and forth, with one team responsible for storing data and running applications, and one responsible for using the data for business outcomes.

Today, we see ample evidence this gap is closing at many organizations. Consider:

  • Many technology platforms and software applications now are designed for business users. Business intelligence is a prime example; it’s rare today to see IT pros have to run reports for business users thanks to self-service.
  • Many workers, especially those that came of age surrounded by technology, have a better understanding of both the business and technology that runs their organizations. Education programs also have evolved to help students develop a background in both business and technology.
  • There’s more portability in roles, with technology minds moving to business leadership positions and vice versa.

“The business domain has always existed in enterprise architecture,” says Manuel Ponchaux, director of product management at erwin, Inc. “However, enterprise architecture has traditionally been an IT function with a prime focus on IT. We are now seeing a shift with a greater focus on business outcomes.”

You can see evidence of this blended focus in some of the titles, like “business architect,” being bestowed upon what was traditionally at IT function. These titles demonstrate an understanding that technology cannot exist in the modern organization for the sake of technology alone – technology needs to support the business and its customers. This concept is also a major focus of the digital transformation wave that’s washing over the business world, and thus we see it reflected in job titles that simply didn’t exist a decade ago.

Job titles aside, enterprise architecture (EA) and business process (BP) teams still have different goals, though at many organizations they now work more closely together than they did in the past. Today, both EA and BP teams recognize that their common goal is better business outcomes. Along the way to that goal, each team conducts a number of similar tasks.

Enterprise Architecture and Business Process: Better Together

One prominent example is modeling. Both enterprise architecture and business process teams do modeling, but they do it in different ways at different levels, and they often use different data and tools. This lack of coordination and communication makes it difficult to develop a true sense of a process from the IT and business sides of the equation. It can also lead to duplication of efforts, which is inefficient and likely to add further confusion when trying to understand outcomes.

Building better business outcomes is like following a plan at a construction site. If different teams are making their own decisions about the materials they’re going to use and following their own blueprints, you’re unlikely to see the building you expect to see at the end of the job.

And that’s essentially what is missing at many organizations: A common repository with role-based views, interfaces and dashboard so that enterprise architecture and business process can truly work together using the same blueprint. When enterprise architecture and business process can use common tools that both aid collaboration and help them understand the elements most important to their roles, the result is greater accuracy, increased efficiency and improved outcomes.

erwin’s enterprise architecture and business process tools provide the common repository and role-based views that help these teams work collaboratively toward their common goals. Finally, enterprise architecture and business process can be on the same page.

Business Process Modeling Use Cases

Categories
erwin Expert Blog

A Guide to CCPA Compliance and How the California Consumer Privacy Act Compares to GDPR

California Consumer Privacy Act (CCPA) compliance shares many of the same requirements in the European Unions’ General Data Protection Regulation (GDPR).

While the CCPA has been signed into law, organizations have until Jan. 1, 2020, to enact its mandates. Luckily, many organizations have already laid the regulatory groundwork for it because of their efforts to comply with GDPR.

However, there are some key differences that we’ll explore in the Q&A below.

Data governance, thankfully, provides a framework for compliance with either or both – in addition to other regulatory mandates your organization may be subject to.

CCPA Compliance Requirements vs. GDPR FAQ

Does CCPA apply to not-for-profit organizations? 

No, CCPA compliance only applies to for-profit organizations. GDPR compliance is required for any organization, public or private (including not-for-profit).

What for-profit businesses does CCPA apply to?

The mandate for CCPA compliance only applies if a for-profit organization:

  • Has an annual gross revenue exceeding $25 million
  • Collects, sells or shares the personal data of 50,000 or more consumers, households or devices
  • Earns 50% of more of its annual revenue by selling consumers’ personal information

Does the CCPA apply outside of California?

As the name suggests, the legislation is designed to protect the personal data of consumers who reside in the state of California.

But like GDPR, CCPA compliance has impacts outside the area of origin. This means businesses located outside of California, but selling to (or collecting the data of) California residents must also comply.

Does the CCPA exclude anything that GDPR doesn’t? 

GDPR encompasses all categories of “personal data,” with no distinctions.

CCPA does make distinctions, particularly when other regulations may overlap. These include:

  • Medical information covered by the Confidentiality of Medical Information Act (CMIA) and the Health Insurance Portability and Accountability Act (HIPAA)
  • Personal information covered by the Gramm-Leach-Bliley Act (GLBA)
  • Personal information covered by the Driver’s Privacy Protection Act (DPPA)
  • Clinical trial data
  • Information sold to or by consumer reporting agencies
  • Publicly available personal information (federal, state and local government records)

What about access requests? 

Under the GDPR, organizations must make any personal data collected from an EU citizen available upon request.

CCPA compliance only requires data collected within the last 12 months to be shared upon request.

Does the CCPA include the right to opt out?

CCPA, like GDPR, empowers gives consumers/citizens the right to opt out in regard to the processing of their personal data.

However, CCPA compliance only requires an organization to observe an opt-out request when it comes to the sale of personal data. GDPR does not make any distinctions between “selling” personal data and any other kind of data processing.

To meet CCPA compliance opt-out standards, organizations must provide a “Do Not Sell My Personal Information” link on their home pages.

Does the CCPA require individuals to willingly opt in?

No. Whereas the GDPR requires informed consent before an organization sells an individual’s information, organizations under the scope of the CCPA can still assume consent. The only exception involves the personal information of children (under 16). Children over 13 can consent themselves, but if the consumer is a child under 13, a parent or guardian must authorize the sale of said child’s personal data.

What about fines for CCPA non-compliance? 

In theory, fines for CCPA non-compliance are potentially more far reaching than those of GDPR because there is no ceiling for CCPA penalties. Under GDPR, penalties have a ceiling of 4% of global annual revenue or €20 million, whichever is greater. GDPR recently resulted in a record fine for Google.

Organizations outside of CCPA compliance can only be fined up to $7,500 per violation, but there is no upper ceiling.

CCPA compliance is a data governance issue

Data Governance for Regulatory Compliance

While CCPA has a more narrow geography and focus than GDPR, compliance is still a serious effort for organizations under its scope. And as data-driven business continues to expand, so too will the pressure on lawmakers to regulate how organizations process data. Remember the Facebook hearings and now inquiries into Google and Twitter, for example?

Regulatory compliance remains a key driver for data governance. After all, to understand how to meet data regulations, an organization must first understand its data.

An effective data governance initiative should enable just that, by giving an organization the tools to:

  • Discover data: Identify and interrogate metadata from various data management silos
  • Harvest data: Automate the collection of metadata from various data management silos and consolidate it into a single source
  • Structure data: Connect physical metadata to specific business terms and definitions and reusable design standards
  • Analyze data: Understand how data relates to the business and what attributes it has
  • Map data flows: Identify where to integrate data and track how it moves and transforms
  • Govern data: Develop a governance model to manage standards and policies and set best practices
  • Socialize data: Enable all stakeholders to see data in one place in their own context

A Regulatory EDGE

The erwin EDGE software platform creates an “enterprise data governance experience” to transform how all stakeholders discover, understand, govern and socialize data assets. It includes enterprise modeling, data cataloging and data literacy capabilities, giving organizations visibility and control over their disparate architectures and all the supporting data.

Both IT and business stakeholders have role-based, self-service access to the information they need to collaborate in making strategic decisions. And because many of the associated processes can be automated, you reduce errors and increase the speed and quality of your data pipeline. This data intelligence unlocks knowledge and value.

The erwin EDGE provides the most agile, efficient and cost-effective means of launching and sustaining a strategic and comprehensive data governance initiative, whether you wish to deploy on premise or in the cloud. But you don’t have to implement every component of the erwin EDGE all at once to see strategic value.

Because of the platform’s federated design, you can address your organization’s most urgent needs, such as regulatory compliance, first. Then you can proactively address other organization objectives, such as operational efficiency, revenue growth, increasing customer satisfaction and improving overall decision-making.

You can learn more about leveraging data governance to navigate the changing tide of data regulations here.

Are you compliant with data regulations?

Categories
erwin Expert Blog Data Governance

Data Governance Frameworks: The Key to Successful Data Governance Implementation

A strong data governance framework is central to successful data governance implementation in any data-driven organization because it ensures that data is properly maintained, protected and maximized.

But despite this fact, enterprises often face push back when implementing a new data governance initiative or trying to mature an existing one.

Let’s assume you have some form of informal data governance operation with some strengths to build on and some weaknesses to correct. Some parts of the organization are engaged and behind the initiative, while others are skeptical about its relevance or benefits.

Some other common data governance implementation obstacles include:

  • Questions about where to begin and how to prioritize which data streams to govern first
  • Issues regarding data quality and ownership
  • Concerns about data lineage
  • Competing project and resources (time, people and funding)

By using a data governance framework, organizations can formalize their data governance implementation and subsequent adherence to. This addressess common concerns including data quality and data lineage, and provides a clear path to successful data governance implementation.

In this blog, we will cover three key steps to successful data governance implementation. We will also look into how we can expand the scope and depth of a data governance framework to ensure data governance standards remain high.

Data Governance Implementation in 3 Steps

When maturing or implementing data governance and/or a data governance framework, an accurate assessment of the ‘here and now’ is key. Then you can rethink the path forward, identifying any current policies or business processes that should be incorporated, being careful to avoid making the same mistakes of prior iterations.

With this in mind, here are three steps we recommend for implementing data governance and a data governance framework.

Data Governance Framework

Step 1: Shift the culture toward data governance

Data governance isn’t something to set and forget; it’s a strategic approach that needs to evolve over time in response to new opportunities and challenges. Therefore, a successful data governance framework has to become part of the organization’s culture but such a shift requires listening – and remembering that it’s about people, empowerment and accountability.

In most cases, a new data governance framework requires people – those in IT and across the business, including risk management and information security – to change how they work. Any concerns they raise or recommendations they make should be considered. You can encourage feedback through surveys, workshops and open dialog.

Once input has been discussed and plan agreed upon, it is critical to update roles and responsibilities, provide training and ensure ongoing communication. Many organizations now have internal certifications for different data governance roles who wear these badges with pride.

A top-down management approach will get a data governance initiative off the ground, but only bottom-up cultural adoption will carry it out.

Step 2: Refine the data governance framework

The right capabilities and tools are important for fueling an accurate, real-time data pipeline and governing it for maximum security, quality and value. For example:

Data catalogingOrganization’s implementing a data governance framework will benefit from automated metadata harvesting, data mapping, code generation and data lineage with reference data management, lifecycle management and data quality. With these capabilities, you can  efficiently integrate and activate enterprise data within a single, unified catalog in accordance with business requirements.

Data literacy Being able to discover what data is available and understand what it means in common, standardized terms is important because data elements may mean different things to different parts of the organization. A business glossary answers this need, as does the ability for stakeholders to view data relevant to their roles and understand it within a business context through a role-based portal.

Such tools are further enhanced if they can be integrated across data and business architectures and when they promote self-service and collaboration, which also are important to the cultural shift.

 

Subscribe to the erwin Expert Blog

Once you submit the trial request form, an erwin representative will be in touch to verify your request and help you start data modeling.

 

 

Step 3: Prioritize then scale the data governance framework

Because data governance is on-going, it’s important to prioritize the initial areas of focus and scale from there. Organizations that start with 30 to 50 data items are generally more successful than those that attempt more than 1,000 in the early stages.

Find some representative (familiar) data items and create examples for data ownership, quality, lineage and definition so stakeholders can see real examples of the data governance framework in action. For example:

  • Data ownership model showing a data item, its definition, producers, consumers, stewards and quality rules (for profiling)
  • Workflow showing the creation, enrichment and approval of the above data item to demonstrate collaboration

Whether your organization is just adopting data governance or the goal is to refine an existing data governance framework, the erwin DG RediChek will provide helpful insights to guide you in the journey.

Categories
erwin Expert Blog

What’s Business Process Modeling Got to Do with It? – Choosing A BPM Tool

With business process modeling (BPM) being a key component of data governance, choosing a BPM tool is part of a dilemma many businesses either have or will soon face.

Historically, BPM didn’t necessarily have to be tied to an organization’s data governance initiative.

However, data-driven business and the regulations that oversee it are becoming increasingly extensive, so the need to view data governance as a collective effort – in terms of personnel and the tools that make up the strategy – is becoming harder to ignore.

Data governance also relies on business process modeling and analysis to drive improvement, including identifying business practices susceptible to security, compliance or other risks and adding controls to mitigate exposures.

Choosing a BPM Tool: An Overview

As part of a data governance strategy, a BPM tool aids organizations in visualizing their business processes, system interactions and organizational hierarchies to ensure elements are aligned and core operations are optimized.

The right BPM tool also helps organizations increase productivity, reduce errors and mitigate risks to achieve strategic objectives.

With  insights from the BPM tool, you can clarify roles and responsibilities – which in turn should influence an organization’s policies about data ownership and make data lineage easier to manage.

Organizations also can use a BPM tool to identify the staff who function as “unofficial data repositories.” This has both a primary and secondary function:

1. Organizations can document employee processes to ensure vital information isn’t lost should an employee choose to leave.

2. It is easier to identify areas where expertise may need to be bolstered.

Organizations that adopt a BPM tool also enjoy greater process efficiency. This is through a combination of improving existing processes or designing new process flows, eliminating unnecessary or contradictory steps, and documenting results in a shareable format that is easy to understand so the organization is pulling in one direction.

Choosing a BPM Tool

Silo Buster

Understanding the typical use cases for business process modeling is the first step. As with any tech investment, it’s important to understand how the technology will work in the context of your organization/business.

For example, it’s counter-productive to invest in a solution that reduces informational silos only to introduce a new technological silo through a lack of integration.

Ideally, organizations want a BPM tool that works in conjunction with the wider data management platform and data governance initiative – not one that works against them.

That means it must support data imports and integrations from/with external sources, a solution that enables in-tool collaboration to reduce departmental silos, and most crucial, a solution that taps into a central metadata repository to ensure consistency across the whole data management and governance initiatives.

The lack of a central metadata repository is a far too common thorn in an organization’s side. Without it, they have to juggle multiple versions as changes to the underlying data aren’t automatically updated across the platform.

It also means organizations waste crucial time manually manufacturing and maintaining data quality, when an automation framework could achieve the same goal instantaneously, without human error and with greater consistency.

A central metadata repository ensures an organization can acknowledge and get behind a single source of truth. This has a wealth of favorable consequences including greater cohesion across the organization, better data quality and trust, and faster decision-making with less false starts due to plans based on misleading information.

Three Key Questions to Ask When Choosing a BPM Tool

Organizations in the market for a BPM tool should also consider the following:

1. Configurability: Does the tool support the ability to model and analyze business processes with links to data, applications and other aspects of your organization? And how easy is this to achieve?

2. Role-based views: Can the tool develop integrated business models for a single source of truth but with different views for different stakeholders based on their needs – making regulatory compliance more manageable? Does it enable cross-functional and enterprise collaboration through discussion threads, surveys and other social features?

3. Business and IT infrastructure interoperability: How well does the tool integrate with other key components of data governance including enterprise architecture, data modeling, data cataloging and data literacy? Can it aid in providing data intelligence to connect all the pieces of the data management and governance lifecycles?

For more information and to find out how such a solution can integrate with your organization and current data management and data governance initiatives, click here.

BPM Tool - erwin BP powered by Casewise

Categories
erwin Expert Blog

Data Mapping Tools: What Are the Key Differentiators

The need for data mapping tools in light of increasing volumes and varieties of data – as well as the velocity at which it must be processed – is growing.

It’s not difficult to see why either. Data mapping tools have always been a key asset for any organization looking to leverage data for insights.

Isolated units of data are essentially meaningless. By linking data and enabling its categorization in relation to other data units, data mapping provides the context vital for actionable information.

Now with the General Data Protection Regulation (GDPR) in effect, data mapping has become even more significant.

The scale of GDPR’s reach has set a new precedent and is the closest we’ve come to a global standard in terms of data regulations. The repercussions can be huge – just ask Google.

Data mapping tools are paramount in charting a path to compliance for said new, near-global standard and avoiding the hefty fines.

Because of GDPR, organizations that may not have fully leveraged data mapping for proactive data-driven initiatives (e.g., analysis) are now adopting data mapping tools with compliance in mind.

Arguably, GDPR’s implementation can be viewed as an opportunity – a catalyst for digital transformation.

Those organizations investing in data mapping tools with compliance as the main driver will definitely want to consider this opportunity and have it influence their decision as to which data mapping tool to adopt.

With that in mind, it’s important to understand the key differentiators in data mapping tools and the associated benefits.

Data Mapping Tools: erwin Mapping Manager

Data Mapping Tools: Automated or Manual?

In terms of differentiators for data mapping tools, perhaps the most distinct is automated data mapping versus data mapping via manual processes.

Data mapping tools that allow for automation mean organizations can benefit from in-depth, quality-assured data mapping, without the significant allocations of resources typically associated with such projects.

Eighty percent of data scientists’ and other data professionals’ time is spent on manual data maintenance. That’s anything and everything from addressing errors and inconsistencies and trying to understand source data or track its lineage. This doesn’t even account for the time lost due to missed errors that contribute to inherently flawed endeavors.

Automated data mapping tools render such issues and concerns void. In turn, data professionals’ time can be put to much better, proactive use, rather than them being bogged down with reactive, house-keeping tasks.

FOUR INDUSTRY FOCUSSED CASE STUDIES FOR AUTOMATED METADATA-DRIVEN AUTOMATION 
(BFSI, PHARMA, INSURANCE AND NON-PROFIT) 

 

As well as introducing greater efficiency to the data governance process, automated data mapping tools enable data to be auto-documented from XML that builds mappings for the target repository or reporting structure.

Additionally, a tool that leverages and draws from a single metadata repository means that mappings are dynamically linked with underlying metadata to render automated lineage views, including full transformation logic in real time.

Therefore, changes (e.g., in the data catalog) will be reflected across data governance domains (business process, enterprise architecture and data modeling) as and when they’re made – no more juggling and maintaining multiple, out-of-date versions.

It also enables automatic impact analysis at the table and column level – even for business/transformation rules.

For organizations looking to free themselves from the burden of juggling multiple versions, siloed business processes and a disconnect between interdepartmental collaboration, this feature is a key benefit to consider.

Data Mapping Tools: Other Differentiators

In light of the aforementioned changes to data regulations, many organizations will need to consider the extent of a data mapping tool’s data lineage capabilities.

The ability to reverse-engineer and document the business logic from your reporting structures for true source-to-report lineage is key because it makes analysis (and the trust in said analysis) easier. And should a data breach occur, affected data/persons can be more quickly identified in accordance with GDPR.

Article 33 of GDPR requires organizations to notify the appropriate supervisory authority “without undue delay and, where, feasible, not later than 72 hours” after discovering a breach.

As stated above, a data governance platform that draws from a single metadata source is even more advantageous here.

Mappings can be synchronized with metadata so that source or target metadata changes can be automatically pushed into the mappings – so your mappings stay up to date with little or no effort.

The Data Mapping Tool For Data-Driven Businesses

Nobody likes manual documentation. It’s arduous, error-prone and a waste of resources. Quite frankly, it’s dated.

Any organization looking to invest in data mapping, data preparation and/or data cataloging needs to make automation a priority.

With automated data mapping, organizations can achieve “true data intelligence,”. That being the ability to tell the story of how data enters the organization and changes throughout the entire lifecycle to the consumption/reporting layer.  If you’re working harder than your tool, you have the wrong tool.

The manual tools of old do not have auto documentation capabilities, cannot produce outbound code for multiple ETL or script types, and are a liability in terms of accuracy and GDPR.

Automated data mapping is the only path to true GDPR compliance, and erwin Mapping Manager can get you there in a matter of weeks thanks to our robust reverse-engineering technology. 

Learn more about erwin’s automation framework for data governance here.

Automate Data Mapping

Categories
erwin Expert Blog

Data Governance Stock Check: Using Data Governance to Take Stock of Your Data Assets

For regulatory compliance (e.g., GDPR) and to ensure peak business performance, organizations often bring consultants on board to help take stock of their data assets. This sort of data governance “stock check” is important but can be arduous without the right approach and technology. That’s where data governance comes in …

While most companies hold the lion’s share of operational data within relational databases, it also can live in many other places and various other formats. Therefore, organizations need the ability to manage any data from anywhere, what we call our “any-squared” (Any2) approach to data governance.

Any2 first requires an understanding of the ‘3Vs’ of data – volume, variety and velocity – especially in context of the data lifecycle, as well as knowing how to leverage the key  capabilities of data governance – data cataloging, data literacy, business process, enterprise architecture and data modeling – that enable data to be leveraged at different stages for optimum security, quality and value.

Following are two examples that illustrate the data governance stock check, including the Any2 approach in action, based on real consulting engagements.

Data Governance Stock Check

Data Governance “Stock Check” Case 1: The Data Broker

This client trades in information. Therefore, the organization needed to catalog the data it acquires from suppliers, ensure its quality, classify it, and then sell it to customers. The company wanted to assemble the data in a data warehouse and then provide controlled access to it.

The first step in helping this client involved taking stock of its existing data. We set up a portal so data assets could be registered via a form with basic questions, and then a central team received the registrations, reviewed and prioritized them. Entitlement attributes also were set up to identify and profile high-priority assets.

A number of best practices and technology solutions were used to establish the data required for managing the registration and classification of data feeds:

1. The underlying metadata is harvested followed by an initial quality check. Then the metadata is classified against a semantic model held in a business glossary.

2. After this classification, a second data quality check is performed based on the best-practice rules associated with the semantic model.

3. Profiled assets are loaded into a historical data store within the warehouse, with data governance tools generating its structure and data movement operations for data loading.

4. We developed a change management program to make all staff aware of the information brokerage portal and the importance of using it. It uses a catalog of data assets, all classified against a semantic model with data quality metrics to easily understand where data assets are located within the data warehouse.

5. Adopting this portal, where data is registered and classified against an ontology, enables the client’s customers to shop for data by asset or by meaning (e.g., “what data do you have on X topic?”) and then drill down through the taxonomy or across an ontology. Next, they raise a request to purchase the desired data.

This consulting engagement and technology implementation increased data accessibility and capitalization. Information is registered within a central portal through an approved workflow, and then customers shop for data either from a list of physical assets or by information content, with purchase requests also going through an approval workflow. This, among other safeguards, ensures data quality.

Benefits of Data Governance

Data Governance “Stock Check” Case 2: Tracking Rogue Data

This client has a geographically-dispersed organization that stored many of its key processes in Microsoft Excel TM spreadsheets. They were planning to move to Office 365TM and were concerned about regulatory compliance, including GDPR mandates.

Knowing that electronic documents are heavily used in key business processes and distributed across the organization, this company needed to replace risky manual processes with centralized, automated systems.

A key part of the consulting engagement was to understand what data assets were in circulation and how they were used by the organization. Then process chains could be prioritized to automate and outline specifications for the system to replace them.

This organization also adopted a central portal that allowed employees to register data assets. The associated change management program raised awareness of data governance across the organization and the importance of data registration.

For each asset, information was captured and reviewed as part of a workflow. Prioritized assets were then chosen for profiling, enabling metadata to be reverse-engineered before being classified against the business glossary.

Additionally, assets that were part of a process chain were gathered and modeled with enterprise architecture (EA) and business process (BP) modeling tools for impact analysis.

High-level requirements for new systems then could be defined again in the EA/BP tools and prioritized on a project list. For the others, decisions could be made on whether they could safely be placed in the cloud and whether macros would be required.

In this case, the adoption of purpose-built data governance solutions helped build an understanding of the data assets in play, including information about their usage and content to aid in decision-making.

This client then had a good handle of the “what” and “where” in terms of sensitive data stored in their systems. They also better understood how this sensitive data was being used and by whom, helping reduce regulatory risks like those associated with GDPR.

In both scenarios, we cataloged data assets and mapped them to a business glossary. It acts as a classification scheme to help govern data and located data, making it both more accessible and valuable. This governance framework reduces risk and protects its most valuable or sensitive data assets.

Focused on producing meaningful business outcomes, the erwin EDGE platform was pivotal in achieving these two clients’ data governance goals – including the infrastructure to undertake a data governance stock check. They used it to create an “enterprise data governance experience” not just for cataloging data and other foundational tasks, but also for a competitive “EDGE” in maximizing the value of their data while reducing data-related risks.

To learn more about the erwin EDGE data governance platform and how it aids in undertaking a data governance stock check, register for our free, 30-minute demonstration here.

Categories
erwin Expert Blog

Digital Transformation in Municipal Government: The Hidden Force Powering Smart Cities

Smart cities are changing the world.

When you think of real-time, data-driven experiences and modern applications to accomplish tasks faster and easier, your local town or city government probably doesn’t come to mind. But municipal government is starting to embrace digital transformation and therefore data governance.

Municipal government has never been an area in which to look for tech innovation. Perpetually strapped for resources and budget, often relying on legacy applications and infrastructure, and perfectly happy being available during regular business hours (save for emergency responders), most municipal governments lacked the ability and motivation to (as they say in the private sector) digitally transform. Then an odd thing happened – the rest of the world started transforming.

If you shop at a retailer that doesn’t deliver a modern, personalized experience, thousands more retailers are just a click away. But people rarely pick up and move to a new city because the new city offers a better website or mobile app. The motivation for municipal governments to transform simply isn’t there in the same way it is for the private sector.

But there are some things many city residents care about deeply: public safety, quality of life, how their tax dollars are spent, and the ability to do business with their local government when they want, not when it’s convenient for the municipality. And much like the private sector, better decisions around all of these concerns can be made when accurate, timely data is available to help inform them.

Digital transformation in municipal government is taking place in two main areas today: constituent services and the “smart cities” movement.

Digital Transformation in Municipal Government: Being “Smart” About It

The ability to serve constituents easily and efficiently is of increasing importance and a key objective of digital transformation in municipal government. It’s a direct result of the data-driven customer experiences that are increasingly the norm in the private sector.

Residents want the ability to pay their taxes online, report a pothole from their phone, and generally make it easier to interact with their local officials and services. This can be accomplished with dashboards and constituent portals.

The smart cities movement refers to the broad effort of municipal governments to incorporate sensors, data collection and analysis to improve responses to everything from rush-hour traffic to air quality to crime prevention. When the McKinsey Global Institute examined smart technologies that could be deployed by cities, it found that the public sector would be the natural owner of 70 percent of the applications it reviewed.

“Cities are getting in on the data game,” says Danny Sandwell, product marketing director at erwin, Inc. And with information serving as the lifeblood of many of these projects, the effectiveness of the services offered, the return on the investments in hardware and software, and the happiness of the users all depend on timely, accurate and effective data.

These initiatives present a pretty radical departure from the way cities have traditionally been managed.

A constituent portal, for example, requires that users can be identified, authenticated and then have access to information that resides in various departments, such as the tax collector to view and pay taxes, the building department to view a building permit, and the parking authority to manage public parking permits.

For many municipalities, this is uncharted territory.

Smart Cities

Data Governance: The Force Powering Smart Cities

The efficiencies offered by smart city technologies only exist if the data leads to a proper allocation of resources.

If you can identify an increase in crime in a certain neighborhood, for example, you can increase police patrols in response. But if the data is inaccurate, those patrols are wasted while other neighborhoods experience a rise in crime.

Now that they’re in the data game, it’s time for municipal governments to understand data governance – the driving force behind any successful data-driven operation. When you have the ability to understand all of the information related to a piece of data, you have more confidence in how it is analyzed, used and protected.

Data governance doesn’t take place at a single application or in the data warehouse. It needs to be woven into the enterprise architecture and processes of the municipality to ensure data is accurate, timely and accessible to those who need it (and inaccessible to everyone else).

When this all comes together – good data, solid analytics and improved services for residents – the results can be quite striking. New efficiencies will make municipal governments better stewards of tax dollars. An improved quality of life can lift tax revenue by making the city more appealing to citizens and developers.

There’s a lot for cities to gain if they get in the data game. And truly smart cities will make sure they play the game right with effective data governance.

Benefits of Data Governance

Categories
erwin Expert Blog

Digital Transformation In Retail: The Retail Apocalypse

Much like the hospitality industry, digital transformation in retail has been a huge driver of change.

One important fact is getting lost among all of the talk of “the retail apocalypse” and myriad stories about increasingly empty shopping malls: there’s a lot of money to be made in retail. In fact, the retail market was expected to grow by more than 3 percent in 2018, unemployment is low, and wages are at least stable.

In short, there’s money to be spent. Now, where are shoppers spending it?

Coming into 2019, consumers are in control when it comes to retail. Choices are abundant. According to Deloitte’s 2018 Retail, Wholesale and Distribution Industry Trends Outlook, “consumers have been conditioned to expect fast, convenient and effortless consumption.”

This is arguably the result of the degree of digital transformation in retail that we’ve seen in recent years.

If you want to survive in retail today, you need to make it easy on your customers. That means meeting their needs across channels, fulfilling orders quickly and accurately, offering competitive prices, and not sacrificing quality in the process.

Even in a world where Amazon has changed the retail game, Walmart just announced that it had its best holiday season in years. According to a recent Fortune article, “Walmart’s e-commerce sales rose 43 percent during the quarter, belying another myth: e-commerce and store sales are in competition with each other.”

Retail has always been a very fickle industry, with the right product mix and the right appeal to the right customers being crucial to success. But digital transformation in retail has seen the map change. You’re no longer competing with the store across the street; you’re competing with the store across the globe.

Digital Transformation In Retail

Retailers are putting every aspect of their businesses under scrutiny to help them remain relevant. Four areas in particular are getting a great deal of attention:

Customer experience: In today’s need-it-fast, need-it-now, need-it-right world, customers expect the ability to make purchases where they are, not where you are. That means via the Web, mobile devices or in a store. And all of the information about those orders needs to be tied together, so that if there is a problem, it can be resolved quickly via any channel.

Competitive differentiation: Appealing to retail customers used to mean appealing to all of your customers as one group or like-minded block. But customers are individuals, and today they can be targeted with personalized messaging and products that are likely to appeal to them, not to everyone.

Supply chain: Having the right products in the right place at the right time is part of the supply chain strategy. But moving them efficiently and cost effectively from any number of suppliers to warehouses and stores can make or break margins.

Partnerships: Among the smaller players in the retail space, partnerships with industry giants like Amazon can help reach a global audience that simply isn’t otherwise available and also reduce complexity. Larger players also recognize that partnerships can be mutually beneficial in the retail space.

Enabling each of these strategies is data – and lots of it. Data is the key to recognizing customers, personalizing experiences, making helpful recommendations, ensuring items are in stock, tracking deliveries and more. At its core, this is what digital transformation in retail seeks to achieve.

Digital Transformation in Retail – What’s the Risk?

But if data is the great enabler in retail, it’s also a huge risk – risk that the data is wrong, that it is old, and that it ends up in the hands of some person or entity that isn’t supposed to have it.

Danny Sandwell, director of product marketing for erwin, Inc., says retailers need to achieve a level of what he calls “data intelligence.” A little like business intelligence, Sandwell uses the term to mean that when someone in retail uses data to make a decision or power an experience or send a recommendation, they have the ability to find out anything they need about that data, including its source, age, who can access it, which applications use it, and more.

Given all of the data that flows into the modern retailer, this level of data intelligence requires a holistic, mature and well-planned data governance strategy. Data governance doesn’t just sit in the data warehouse, it’s woven into business processes and enterprise architecture to provide data visibility for fast, accurate decision-making, help keep data secure, identify problems early, and alert users to things that are working.

How important is clean, accurate, timely data in retail? Apply it to the four areas discussed above:

Customer experience:  If your data shows a lot of abandoned carts from mobile app users, then that’s an area to investigate, and good data will identify it.

Competitive differentiation: Are personalized offers increasing sales and creating customer loyalty? This is an important data point for marketing strategy.

Supply chain: Can a problem with quality be related to items shipping from a certain warehouse? Data will zero in on the location of the problem.

Partnerships: Are your partnerships helping grow other parts of your business and creating new customers? Or are your existing customers using partners in place of visiting your store? Data can tell you.

Try drawing these conclusions without data. You can’t. And even worse, try drawing them with inaccurate data and see what happens when a partnership that was creating customers is ended or mobile app purchases plummet after an ill-advised change to the experience.

If you want to focus on margins in retail, don’t forget this one: there is no margin for error.

Over the next few weeks, we’ll be looking closely at digital transformation examples in other sectors, including hospitality and government. Subscribe to to stay in the loop.

Data Management and Data Governance: Solving the Enterprise Data Dilemma

Categories
erwin Expert Blog

Digital Transformation Examples: How Data Is Transforming the Hospitality Industry

The rate at which organizations have adopted data-driven strategies means there are a wealth of digital transformation examples for organizations to draw from.

By now, you probably recognize this recurring pattern in the discussions about digital transformation:

  • An industry set in its ways slowly moves toward using information technology to create efficiencies, automate processes or help identify new customer or product opportunities.
  • All is going fine until a new kid on the block, born in the age of IT and the internet, quickly starts to create buzz and redefine what customers expect from the industry.
  • To keep pace, the industry stalwarts rush into catch-up mode but make inevitably mistakes. ROI doesn’t meet expectations, the customer experience isn’t quite right, and data gets exposed or mishandled.

There’s one industry we’re all familiar with that welcomes billions of global customers every year; that’s in the midst of a strong economic run; is dealing with high-profile disruptors; and suffered a very public data breach to one of its storied brands in 2018 that raised eyebrows around the world.

Welcome to the hospitality industry.

The hotel and hospitality industry was expected to see 5 to 6 percent growth in 2018, part of an impressive run of performance fueled by steady demand, improved midmarket offerings, and a new supply of travelers from developing regions.

All this despite challenges from upstarts like AirB2B, HomeAway and Couchsurfing plus a data breach at Marriott/Starwood that exposed the data of 500 million customers.

Digital Transformation Examples: Data & the Hospitality Industry

Online start-ups such as Airbnb, HomeAway and Couchsurfing are some of the most clear cut digital transformation examples in the hospitality industry.

Digital Transformation Examples: Hospitality – Data, Data Everywhere

As with other industries, digital transformation examples in the hospitality industry are abundant – and in turn, those businesses are awash in data with sources that include:

  • Data generated by reservations and payments
  • The data hotels collect to drive their loyalty programs
  • Data used to enhance the customer experience
  • Data shared as part of the billions of handoffs between hotel chains and the various booking sites and agencies that travelers use to plan trips

But all of this data, which now permeates the industry, is relatively new.

“IT wasn’t always a massive priority for [the hospitality industry],” says Danny Sandwell, director of product marketing for erwin, Inc. “So now there’s a lot of data, but these organizations often have a weak backend.

The combination of data and analytics carries a great deal of potential for companies in the hospitality industry. Today’s demanding customers want experiences, not just a bed to sleep in; they want to do business with brands that understand their likes and dislikes; and that send offers relevant to their interests and desired destinations.

All of this is possible when a business collects and analyzes data on the scale that many hotel brands do. However, all of this can fail loudly if there is a problem with that data.

Getting a return on their investments in analytics and marketing technology requires hospitality companies to thoroughly understand the source of their data, the quality of the data, and the relevance of the data. This is where data governance comes into play.

When hospitality businesses are confident in their data, they can use it a number of ways, including:

  • Customer Experience: Quality data can be used to power a best-in-class experience for hotels in a number of areas, including the Web experience, mobile experience, and the in-person guest experience. This is similar to the multi-channel strategy of retailers hoping to deliver memorable and helpful experiences based on what they know about customers, including the ability to make predictions and deliver cross-sell and up-sell opportunities. 
  • Mergers and Acquisitions: Hospitality industry disruptors have some industry players thinking about boosting their businesses via mergers and acquisitions. Good data can identify the best targets and help discover the regions or price points where M&A makes the most sense and will deliver the most value. Accurate data can also help pinpoint the true cost of M&A activity.
  • Security: Marriott’s data breach, which actually began as a breach at Starwood before Marriott acquired it, highlights the importance of data security in the hospitality industry. Strong data governance can help prevent breaches, as well as help control breaches so organizations more quickly identify the scope and action behind a breach, an important part of limiting damage.
  • Partnerships: The hospitality industry is increasingly connected, not just because of booking sites working with dozens of hotel brands but also because of tour operators turning a hotel stay into an experience and transportation companies arranging travel for guests. Providing a room is no longer enough.

Data governance is not an application or a tool. It is a strategy. When it is done correctly and it is deployed in a holistic manner, data governance becomes woven into an organization’s business processes and enterprise architecture.

It then improves the organization’s ability to understand where its data is, where it came from, its value, its quality, and how the data is accessed and used by people and applications.

It’s this level of data maturity that provides comfort to employees – from IT staff to the front desk and everyone in between – that the data they are working with is accurate and helping them better perform their jobs and improve the way they serve customers.

Over the next few weeks, we’ll be looking closely at digital transformation examples in other sectors, including retail and government. Subscribe to to stay in the loop.

GDPR White Paper