erwin Expert Blog

What’s Business Process Modeling Got to Do with It? – Choosing A BPM Tool

With business process modeling (BPM) being a key component of data governance, choosing a BPM tool is part of a dilemma many businesses either have or will soon face.

Historically, BPM didn’t necessarily have to be tied to an organization’s data governance initiative.

However, data-driven business and the regulations that oversee it are becoming increasingly extensive, so the need to view data governance as a collective effort – in terms of personnel and the tools that make up the strategy – is becoming harder to ignore.

Data governance also relies on business process modeling and analysis to drive improvement, including identifying business practices susceptible to security, compliance or other risks and adding controls to mitigate exposures.

Choosing a BPM Tool: An Overview

As part of a data governance strategy, a BPM tool aids organizations in visualizing their business processes, system interactions and organizational hierarchies to ensure elements are aligned and core operations are optimized.

The right BPM tool also helps organizations increase productivity, reduce errors and mitigate risks to achieve strategic objectives.

With  insights from the BPM tool, you can clarify roles and responsibilities – which in turn should influence an organization’s policies about data ownership and make data lineage easier to manage.

Organizations also can use a BPM tool to identify the staff who function as “unofficial data repositories.” This has both a primary and secondary function:

1. Organizations can document employee processes to ensure vital information isn’t lost should an employee choose to leave.

2. It is easier to identify areas where expertise may need to be bolstered.

Organizations that adopt a BPM tool also enjoy greater process efficiency. This is through a combination of improving existing processes or designing new process flows, eliminating unnecessary or contradictory steps, and documenting results in a shareable format that is easy to understand so the organization is pulling in one direction.

Choosing a BPM Tool

Silo Buster

Understanding the typical use cases for business process modeling is the first step. As with any tech investment, it’s important to understand how the technology will work in the context of your organization/business.

For example, it’s counter-productive to invest in a solution that reduces informational silos only to introduce a new technological silo through a lack of integration.

Ideally, organizations want a BPM tool that works in conjunction with the wider data management platform and data governance initiative – not one that works against them.

That means it must support data imports and integrations from/with external sources, a solution that enables in-tool collaboration to reduce departmental silos, and most crucial, a solution that taps into a central metadata repository to ensure consistency across the whole data management and governance initiatives.

The lack of a central metadata repository is a far too common thorn in an organization’s side. Without it, they have to juggle multiple versions as changes to the underlying data aren’t automatically updated across the platform.

It also means organizations waste crucial time manually manufacturing and maintaining data quality, when an automation framework could achieve the same goal instantaneously, without human error and with greater consistency.

A central metadata repository ensures an organization can acknowledge and get behind a single source of truth. This has a wealth of favorable consequences including greater cohesion across the organization, better data quality and trust, and faster decision-making with less false starts due to plans based on misleading information.

Three Key Questions to Ask When Choosing a BPM Tool

Organizations in the market for a BPM tool should also consider the following:

1. Configurability: Does the tool support the ability to model and analyze business processes with links to data, applications and other aspects of your organization? And how easy is this to achieve?

2. Role-based views: Can the tool develop integrated business models for a single source of truth but with different views for different stakeholders based on their needs – making regulatory compliance more manageable? Does it enable cross-functional and enterprise collaboration through discussion threads, surveys and other social features?

3. Business and IT infrastructure interoperability: How well does the tool integrate with other key components of data governance including enterprise architecture, data modeling, data cataloging and data literacy? Can it aid in providing data intelligence to connect all the pieces of the data management and governance lifecycles?

For more information and to find out how such a solution can integrate with your organization and current data management and data governance initiatives, click here.

BPM Tool - erwin BP powered by Casewise

erwin Expert Blog

The Key to Improving Business and IT Alignment

Fostering business and IT alignment has become more important than ever.

Gone are the days when IT was a fringe department, resigned to providing support. But after so long on the sidelines, many businesses still struggle to bring IT into the fold, ensuring its alignment with the wider business. But this should be a priority for any data-driven enterprise.

On a fundamental level, it requires a change of perception and culture. The stereotype of basement-housed IT teams was widely acknowledged and satirized. It formed the basis of the popular British sitcom The IT Crowd, which focused on the escapades of three IT staff members in the dingy basement of a huge corporation. Often their best professional input was “turn it off and on again.”

Today, the idea of such a small IT team supporting a huge business is almost too ridiculous to satirize..

Bring IT Out of the Basement

In the age of data-driven business, IT now takes center stage. And it has been promoted out of the basement – at least in principle.

Although IT has moved away from its legacy of support and “keeping the lights on,” many businesses still have a long way to go in fostering business and IT alignment.

But the data-driven nature of modern business demands it. Not only is the wider business responsible for understanding, making use of and capitalizing on data; the business as a whole, including IT, is responsible for upholding the regulations associated with it.

Fostering Business and IT Alignment

The key here, then, is a collaborative data governance program. For business and IT to be sufficiently aligned, the business needs access to all the data relevant to its various departments, whenever it is needed.

This means the right data of the right quality, regardless of format or where it is stored, must be available for use, but only by the right people for the right purpose.

Therefore, the notion that IT can manage and govern data independently is unthinkable. It’s the business that will use data the most, and it’s the business that stands to lose the most when decisions are made based on bad data.

Companies had long neglected this reality. Past efforts to implement data governance programs (Data Governance 1.0) often fell short in adding value. When left solely to IT, Data Governance 1.0 was solely focussed on cataloging data. This, and the disparity between IT and the business meant the meaning of data assets, and their relationship within the wider data landscape, was unclear.

This is what Data Governance 2.0, and its innately collaborative nature aims to resolve. With Data Governance 2.0, the strategy encompasses defined business, IT and business-IT requirements.

Data Governance for Business and IT Alignment

Business Requirements: The business is responsible for defining data, including setting standards for the ownership and meaning of data assets so the organization can use data with a uniformed approach.

IT Requirements: IT manages data at the base level: from mapping data – which may exist across various systems, reports and data models – to physical data assets (databases, files, documents and so on). This, in turn, enables IT to accurately assume the impact of things like data-glossary changes across the enterprise. That’s a key enabling factor in enterprise architecture, allowing for cost-effective and thorough risk management by identifying data points that require the most security.

Business-IT Requirements: A joint effort allows IT to effectively publish data to relevant roles/people. This way, the business can readily use data that is meaningful and relevant to it across various departments, while maintaining compliance with existing and upcoming data protection regulations.

Additionally, those using data can follow data chains back to the source, providing a wider, less ambiguous view of data assets and thus reducing the likelihood of poor decision-making.

For more best practices in business and IT alignment, and successfully implementing data governance, click here.

Business and IT alignment - Data governance