Categories
erwin Expert Blog

Data Governance 2.0: The CIO’s Guide to Collaborative Data Governance

In the data-driven era, CIO’s need a solid understanding of data governance 2.0 …

Data governance (DG) is no longer about just compliance or relegated to the confines of IT. Today, data governance needs to be a ubiquitous part of your organization’s culture.

As the CIO, your stakeholders include both IT and business users in collaborative relationships, which means data governance is not only your business, it’s everyone’s business.

The ability to quickly collect vast amounts of data, analyze it and then use what you’ve learned to help foster better decision-making is the dream of business executives. But that vision is more difficult to execute than it might first appear.

While many organizations are aware of the need to implement a formal data governance initiative, many have faced obstacles getting started.

A lack of resources, difficulties in proving the business case, and challenges in getting senior management to see the importance of such an effort rank among the biggest obstacles facing DG initiatives, according to a recent survey by UBM.

Common Data Governance Challenges - Data Governance 2.0

Despite such hurdles, organizations are committed to trying to get data governance right. The same UBM study found that 98% of respondents considered data governance either important, or critically important to their organization.

And it’s unsurprising too. Considering that the unprecedented levels of digital transformation, with rapidly changing and evolving technology, mean data governance is not just an option, but rather a necessity.

Recognizing this, the IDC DX Awards recently resurfaced to give proper recognition and distinction to organizations who have successfully digitized their systems and business processes.

Creating a Culture of Data Governance

The right data of the right quality, regardless of where it is stored or what format it is stored in, must be available for use only by the right people for the right purpose. This is the promise of a formal data governance practice.

However, to create a culture of data governance requires buy-in from the top down, and the appropriate systems, tools and frameworks to ensure its continued success.

This take on data governance is often dubbed as Data Governance 2.0.

At erwin, we’ve identified what we believe to be the five pillars of data governance readiness:

  1. Initiative Sponsorship: Without executive sponsorship, you’ll have difficulty obtaining the funding, resources, support and alignment necessary for successful DG.
  2. Organizational Support: DG needs to be integrated into the data stewardship teams and wider culture. It also requires funding.
  3. Team Resources: Most successful organizations have established a formal data management group at the enterprise level. As a foundational component of enterprise data management, DG would reside in such a group.
  4. Enterprise Data Management Methodology: DG is foundational to enterprise data management. Without the other essential components (e.g., metadata management, enterprise data architecture, data quality management), DG will be a struggle.
  5. Delivery Capability: Successful and sustainable DG initiatives are supported by specialized tools, which are scoped as part of the DG initiative’s technical requirements.

Data Security

Data is becoming increasingly difficult to manage, control and secure as evidenced by the uptick in data breaches in almost every industry.

Therefore companies must work to secure intellectual property (IPs), client information and so much more.

So CIOs have to come up with appropriate plans to restrict certain people from accessing this information and allow only a small, relevant circle to view it when necessary.

However, this job isn’t as easy as you think it is. Organizations must walk the line between ease of access/data discoverability and security.

It’s the CIO’s responsibility to keep the balance, and data governance tools with role-based access can help maintain that balance.

Data Storage

The amount of data modern organizations have to manage means CIOs have to rethink data storage, as well as security.

This includes considerations as to what data should be stored and where, as well as understanding what data the organization – and the stakeholders within it – is responsible for.

This knowledge will enable better analysis, and the data used for such analysis more easily accessed when required and by approved parties. This is especially crucial for compliance with government regulations like the General Data Protection Regulation (GDPR), as well as other data regulations.

Defining the Right Audience

It’s a CIO’s responsibility to oversee the organization’s data governance systems. Of course, this means the implementation and upkeep of such systems, but it also includes creating the policies that will inform the data governance program itself.

Nowadays, lots of employees think they need access to all of an organization’s data to help them make better decisions for the company.

However, this can possibly expose company data to numerous threats and cyber attacks as well as intellectual property infringement.

So data governance that ensures only the right audience can access specific company information can come in handy, especially during a company’s brainstorming seasons, new products and services releases, and so much more.

Data governance is to be tailored by CIOs to meet their organizations’ specific needs (and wants). This is to ensure an efficient and effective way of utilizing data while also enabling employees to make better and wiser business decisions.

The Right Tools Help Solve the Enterprise Data Dilemma

What data do we have, where is it and what does it mean? This is the data dilemma that plagues most organizations.

The right tools can make or break your data governance initiatives. They encompass a number of different technologies, including data cataloging, data literacy, business process modeling, enterprise architecture and data modeling.

Each of these tools separately contribute to better data governance, however, increasingly, organizations are realizing the benefits of interconnectivity between them. This interconnectivity can be achieved through centralizing data-driven projects around metadata.

This means data professionals and their work benefits from a single source of truth, making analysis faster, more trustworthy and far easier to collaborate on.

With the erwin EDGE, an “enterprise data governance experience” is created to underpin Data Governance 2.0.

It unifies data and business architectures so all IT and business stakeholders can access relevant data in the context of their roles, supporting a culture committed to using data as a mission-critical asset and orchestrating the key mechanisms required to discover, fully understand, actively govern and effectively socialize and align data to the business.

You can learn more about data governance by reading our whitepaper: Examining the Data Trinity: Governance, Security and Privacy.

Examining the Data Trinity - Governance, Security and Privacy

Categories
erwin Expert Blog

Top 7 Data Governance Blog Posts of 2018

The driving factors behind data governance adoption vary.

Whether implemented as preventative measures (risk management and regulation) or proactive endeavors (value creation and ROI), the benefits of a data governance initiative is becoming more apparent.

Historically most organizations have approached data governance in isolation and from the former category. But as data’s value to the enterprise has grown, so has the need for a holistic, collaborative means of discovering, understanding and governing data.

So with the impetus of the General Data Protection Regulation (GDPR) and the opportunities presented by data-driven transformation, many organizations are re-evaluating their data management and data governance practices.

With that in mind, we’ve compiled a list of the very best, best-practice blog posts from the erwin Experts in 2018.

Defining data governance: DG Drivers

Defining Data Governance

www.erwin.com/blog/defining-data-governance/

Data governance’s importance has become more widely understood. But for a long time, the discipline was marred with a poor reputation owed to consistent false starts, dogged implementations and underwhelming ROI.

The evolution from Data Governance 1.0 to Data Governance 2.0 has helped shake past perceptions, introducing a collaborative approach. But to ensure the collaborative take on data governance is implemented properly, an organization must settle on a common definition.

The Top 6 Benefits of Data Governance

www.erwin.com/blog/top-6-benefits-of-data-governance/

GDPR went into effect for businesses trading with the European Union, including hefty fines for noncompliance with its data collection, storage and usage standards.

But it’s important for organizations to understand that the benefits of data governance extend beyond just GDPR or compliance with any other internal or external regulations.

Data Governance Readiness: The Five Pillars

www.erwin.com/blog/data-governance-readiness/

GDPR had organizations scrambling to implement data governance initiatives by the effective date, but many still lag behind.

Enforcement and fines will increase in 2019, so an understanding of the five pillars of data governance readiness are essential: initiative sponsorship, organizational support, allocation of team resources, enterprise data management methodology and delivery capability.

Data Governance and GDPR: How the Most Comprehensive Data Regulation in the World Will Affect Your Business

www.erwin.com/blog/data-governance-and-gdpr/

Speaking of GDPR enforcement, this post breaks down how the regulation affects business.

From rules regarding active consent, data processing and the tricky “right to be forgotten” to required procedures for notifying afflicted parties of a data breach and documenting compliance, GDPR introduces a lot of complexity.

The Top Five Data Governance Use Cases and Drivers

www.erwin.com/blog/data-governance-use-cases/

An erwin-UBM study conducted in late 2017 sought to determine the biggest drivers for data governance.

In addition to compliance, top drivers turned out to be improving customer satisfaction, reputation management, analytics and Big Data.

Data Governance 2.0 for Financial Services

www.erwin.com/blog/data-governance-2-0-financial-services/

Organizations operating within the financial services industry were arguably the most prepared for GDPR, given its history. However, the huge Equifax data breach was a stark reminder that organizations still have work to do.

As well as an analysis of data governance for regulatory compliance in financial services, this article examines the value data governance can bring to these organizations – up to $30 billion could be on the table.

Understanding and Justifying Data Governance 2.0

www.erwin.com/blog/justifying-data-governance/

For some organizations, the biggest hurdle in implementing a new data governance initiative or strengthening an existing one is support from business leaders. Its value can be hard to demonstrate to those who don’t work directly with data and metadata on a daily basis.

This article examines this data governance roadblock and others in addition to advice on how to overcome them.

 

Automate Data Mapping

Categories
erwin Expert Blog

The Data Governance (R)Evolution

Data governance continues to evolve – and quickly.

Historically, Data Governance 1.0 was siloed within IT and mainly concerned with cataloging data to support search and discovery. However, it fell short in adding value because it neglected the meaning of data assets and their relationships within the wider data landscape.

Then the push for digital transformation and Big Data created the need for DG to come out of IT’s shadows – Data Governance 2.0 was ushered in with principles designed for  modern, data-driven business. This approach acknowledged the demand for collaborative data governance, the tearing down of organizational silos, and spreading responsibilities across more roles.

But this past year we all witnessed a data governance awakening – or as the Wall Street Journal called it, a “global data governance reckoning.” There was tremendous data drama and resulting trauma – from Facebook to Equifax and from Yahoo to Aetna. The list goes on and on. And then, the European Union’s General Data Protection Regulation (GDPR) took effect, with many organizations scrambling to become compliant.

So where are we today?

Simply put, data governance needs to be a ubiquitous part of your company’s culture. Your stakeholders encompass both IT and business users in collaborative relationships, so that makes data governance everyone’s business.

Data Governance is Everyone's Business

Data governance underpins data privacy, security and compliance. Additionally, most organizations don’t use all the data they’re flooded with to reach deeper conclusions about how to grow revenue, achieve regulatory compliance, or make strategic decisions. They face a data dilemma: not knowing what data they have or where some of it is—plus integrating known data in various formats from numerous systems without a way to automate that process.

To accelerate the transformation of business-critical information into accurate and actionable insights, organizations need an automated, real-time, high-quality data pipeline. Then every stakeholder—data scientist, ETL developer, enterprise architect, business analyst, compliance officer, CDO and CEO—can fuel the desired outcomes based on reliable information.

Connecting Data Governance to Your Organization

  1. Data Mapping & Data Governance

The automated generation of the physical embodiment of data lineage—the creation, movement and transformation of transactional and operational data for harmonization and aggregation—provides the best route for enabling stakeholders to understand their data, trust it as a well-governed asset and use it effectively. Being able to quickly document lineage for a standardized, non-technical environment brings business alignment and agility to the task of building and maintaining analytics platforms.

  1. Data Modeling & Data Governance

Data modeling discovers and harvests data schema, and analyzes, represents and communicates data requirements. It synthesizes and standardizes data sources for clarity and consistency to back up governance requirements to use only controlled data. It benefits from the ability to automatically map integrated and cataloged data to and from models, where they can be stored in a central repository for re-use across the organization.

  1. Business Process Modeling & Data Governance

Business process modeling reveals the workflows, business capabilities and applications that use particular data elements. That requires that these assets be appropriately governed components of an integrated data pipeline that rests on automated data lineage and business glossary creation.

  1. Enterprise Architecture & Data Governance

Data flows and architectural diagrams within enterprise architecture benefit from the ability to automatically assess and document the current data architecture. Automatically providing and continuously maintaining business glossary ontologies and integrated data catalogs inform a key part of the governance process.

The EDGE Revolution

 By bringing together enterprise architecturebusiness processdata mapping and data modeling, erwin’s approach to data governance enables organizations to get a handle on how they handle their data and realize its maximum value. With the broadest set of metadata connectors and automated code generation, data mapping and cataloging tools, the erwin EDGE Platform simplifies the total data management and data governance lifecycle.

This single, integrated solution makes it possible to gather business intelligence, conduct IT audits, ensure regulatory compliance and accomplish any other organizational objective by fueling an automated, high-quality and real-time data pipeline.

The erwin EDGE creates an “enterprise data governance experience” that facilitates collaboration between both IT and the business to discover, understand and unlock the value of data both at rest and in motion.

With the erwin EDGE, data management and data governance are unified and mutually supportive of business stakeholders and IT to:

  • Discover data: Identify and integrate metadata from various data management silos.
  • Harvest data: Automate the collection of metadata from various data management silos and consolidate it into a single source.
  • Structure data: Connect physical metadata to specific business terms and definitions and reusable design standards.
  • Analyze data: Understand how data relates to the business and what attributes it has.
  • Map data flows: Identify where to integrate data and track how it moves and transforms.
  • Govern data: Develop a governance model to manage standards and policies and set best practices.
  • Socialize data: Enable stakeholders to see data in one place and in the context of their roles.

If you’ve enjoyed this latest blog series, then you’ll want to request a copy of Solving the Enterprise Data Dilemma, our new e-book that highlights how to answer the three most important data management and data governance questions: What data do we have? Where is it? And how do we get value from it?

Solving the Enterprise Data Dilemma

Categories
erwin Expert Blog

Defining Data Governance: What Is Data Governance?

Data governance (DG) is one of the fastest growing disciplines, yet when it comes to defining data governance many organizations struggle.

Dataversity says DG is “the practices and processes which help to ensure the formal management of data assets within an organization.” These practices and processes can vary, depending on an organization’s needs. Therefore, when defining data governance for your organization, it’s important to consider the factors driving its adoption.

The General Data Protection Regulation (GDPR) has contributed significantly to data governance’s escalating prominence. In fact, erwin’s 2018 State of Data Governance Report found that 60% of organizations consider regulatory compliance to be their biggest driver of data governance.

Defining data governance: DG Drivers

Other significant drivers include improving customer trust/satisfaction and encouraging better decision-making, but they trail behind regulatory compliance at 49% and 45% respectively. Reputation management (30%), analytics (27%) and Big Data (21%) also are factors.

But data governance’s adoption is of little benefit without understanding how DG should be applied within these contexts. This is arguably one of the issues that’s held data governance back in the past.

With no set definition, and the historical practice of isolating data governance within IT, organizations often have had different ideas of what data governance is, even between departments. With this inter-departmental disconnect, it’s not hard to imagine why data governance has historically left a lot to be desired.

However, with the mandate for DG within GDPR, organizations must work on defining data governance organization-wide to manage its successful implementation, or face GDPR’s penalties.

Defining Data Governance: Desired Outcomes

A great place to start when defining an organization-wide DG initiative is to consider the desired business outcomes. This approach ensures that all parties involved have a common goal.

Past examples of Data Governance 1.0 were mainly concerned with cataloging data to support search and discovery. The nature of this approach, coupled with the fact that DG initiatives were typically siloed within IT departments without input from the wider business, meant the practice often struggled to add value.

Without input from the wider business, the data cataloging process suffered from a lack of context. By neglecting to include the organization’s primary data citizens – those that manage and or leverage data on a day-to-day basis for analysis and insight – organizational data was often plagued by duplications, inconsistencies and poor quality.

The nature of modern data-driven business means that such data citizens are spread throughout the organization. Furthermore, many of the key data citizens (think value-adding approaches to data use such as data-driven marketing) aren’t actively involved with IT departments.

Because of this, Data Governance 1.0 initiatives fizzled out at discouraging frequencies.

This is, of course, problematic for organizations that identify regulatory compliance as a driver of data governance. Considering the nature of data-driven business – with new data being constantly captured, stored and leveraged – meeting compliance standards can’t be viewed as a one-time fix, so data governance can’t be de-prioritized and left to fizzle out.

Even those businesses that manage to maintain the level of input data governance needs on an indefinite basis, will find the Data Governance 1.0 approach wanting. In terms of regulatory compliance, the lack of context associated with data governance 1.0, and the inaccuracies it leads to mean that potentially serious data governance issues could go unfounded and result in repercussions for non-compliance.

We recommend organizations look beyond just data cataloging and compliance as desired outcomes when implementing DG. In the data-driven business landscape, data governance finds its true potential as a value-added initiative.

Organizations that identify the desired business outcome of data governance as a value-added initiative should also consider data governance 1.0’s shortcomings and any organizations that hasn’t identified value-adding as a business outcome, should ask themselves, “why?”

Many of the biggest market disruptors of the 21st Century have been digital savvy start-ups with robust data strategies – think Airbnb, Amazon and Netflix. Without high data governance standards, such companies would not have the level of trust in their data to confidently action such digital-first strategies, making them difficult to manage.

Therefore, in the data-driven business era, organizations should consider a Data Governance 2.0 strategy, with DG becoming an organization-wide, strategic initiative that de-silos the practice from the confines of IT.

This collaborative take on data governance intrinsically involves data’s biggest beneficiaries and users in the governance process, meaning functions like data cataloging benefit from greater context, accuracy and consistency.

It also means that organizations can have greater trust in their data and be more assured of meeting the standards set for regulatory compliance. It means that organizations can better respond to customer needs through more accurate methods of profiling and analysis, improving rates of satisfaction. And it means that organizations are less likely to suffer data breaches and their associated damages.

Defining Data Governance: The Enterprise Data Governance Experience (EDGE)

The EDGE is the erwin approach to Data Governance 2.0, empowering an organization to:

  • Manage any data, anywhere (Any2)
  • Instil a culture of collaboration and organizational empowerment
  • Introduce an integrated ecosystem for data management that draws from one central repository and ensures data (including real-time changes) is consistent throughout the organization
  • Have visibility across domains by breaking down silos between business and IT and introducing a common data vocabulary
  • Have regulatory peace of mind through mitigation of a wide range of risks, from GDPR to cybersecurity. 

To learn more about implementing data governance, click here.

Take the DG RediChek

Categories
erwin Expert Blog

Five Pillars of Data Governance Readiness: Team Resources

The Facebook scandal has highlighted the need for organizations to understand and apply the five pillars of data governance readiness.

All eyes were on Mark Zuckerberg this week as he testified before the U.S. Senate and Congress on Facebook’s recent data drama.

A statement from Facebook indicates that the data snare was created due to permission settings leveraged by the Facebook-linked third-party app ‘thisisyourdigitallife.’

Although the method used by Cambridge Analytica to amass personal data from 87 million Facebook users didn’t constitute a “data breach,” it’s still a major data governance (DG) issue that is now creating more than a headache for the company.

The #DeleteFacebook movement is gaining momentum, not to mention the company’s stock dip.

With Facebook’s DG woes a mainstay in global news cycles, and the General Data Protection Regulation’s (GDPR) implementation just around the corner, organizations need to get DG-ready.

During the past few weeks, the erwin Expert Blog has been exploring the five pillars of data governance readiness. So far, we’ve covered initiative sponsorship and organizational support. Today, we talk team resources.

Facebook and the Data Governance Awakening

Most organizations lack the enterprise-level experience required to advance a data governance initiative.

This function may be called by another name (e.g., data management, information management, enterprise data management, etc.), a successful organization recognizes the need for managing data as an enterprise asset.

Data governance, as a foundational component of enterprise data management, would reside within such a group.

You would think an organization like Facebook would have this covered. However, it doesn’t appear that they did.

The reason Facebook is in hot water is because the platform allowed ‘thisisyourdigitallife’ to capture personal data from the Facebook friends of those who used the app, increasing the scope of the data snare by an order of magnitude.

Pillars of Data Governance; Facebook

For context, it took only 53 Australian ‘thisisyourdigitallife’ users to capture 310,000 Australian citizens’ data.

Facebook’s permission settings essentially enabled ‘thisisyourdigitallife’ users to consent on behalf of their friends. Had GDPR been in effect, Facebook would have been non-compliant.

Even so, the extent of the PR fallout demonstrates that regulatory compliance shouldn’t be the only driver for implementing data governance.

Understanding who has access to data and what that data can be used for is a key use case for data governance. This considered, it’s not difficult to imagine how a more robust DG program could have covered Facebook’s back.

Data governance is concerned with units of data – what are they used for, what are the associated risks, and what value do they have to the business? In addition, DG asks who is responsible for the data – who has access? And what is the data lineage?

It acts as the filter that makes data more discoverable to those who need it, while shutting out those without the required permissions.

The Five Pillars of Data Governance: #3 Team Resources

Data governance can’t be executed as a short-term fix. It must be an on-going, strategic initiative that the entire organization supports and is part of. But ideally, a fixed and formal data management group needs to oversee it.

As such, we consider team resources one of the key pillars of data governance readiness.

Data governance requires leadership with experience to ensure the initiative is a value-adding success, not the stifled, siloed programs associated with data governance of old (Data Governance 1.0).

Without experienced leadership, different arms of the organization will likely pull in different directions, undermining the uniformity of data that DG aims to introduce. If such experience doesn’t exist within the organization, then outside consultants should be tapped for their expertise.

As the main technical enabler of the practice, IT should be a key DG participant and even house the afore-mentioned data management group to oversee it. The key word here is “participant,” as the inclination to leave data governance to IT and IT alone has been a common reason for Data Governance 1.0’s struggles.

With good leadership, organizations can implement Data Governance 2.0: the collaborative, outcome-driven approach more suited to the data-driven business landscape. DG 2.0 avoids the pitfalls of its predecessor by expanding the practice beyond IT and traditional data stewards to make it an enterprise-wide responsibility.

By approaching data governance in this manner, organizations ensure those with a stake in data quality (e.g., anyone who uses data) are involved in its discovery, understanding, governance and socialization.

This leads to data with greater context, accuracy and trust. It also hastens decision-making and times to market, resulting in fewer bottlenecks in data analysis.

We refer to this collaborative approach to data governance as the enterprise data governance experience (EDGE).

Back to Facebook. If they had a more robust data governance program, the company could have discovered the data snare exploited by Cambridge Analytica and circumvented the entire scandal (and all its consequences).

But for data governance to be successful, organizations must consider team resources as well as enterprise data management methodology and delivery capability (we’ll cover the latter two in the coming weeks).

To determine your organization’s current state of data governance readiness, take the erwin DG RediChek.

To learn more about how to leverage data governance for GDPR compliance and an EDGE on the competition, click here.

Take the DG RediChek

Categories
erwin Expert Blog

Five Pillars of Data Governance Readiness: Initiative Sponsorship

“Facebook at the center of global reckoning on data governance.” This headline from a March 19 article in The Wall Street Journal sums up where we are. With only two months until the General Data Protection Regulation (GDPR) goes into effect, we’re going to see more headlines about improper data governance (DG) – leading to major fines and tarnished brands.

Since the news of the Facebook data scandal broke, the company’s stock has dropped and Nordea, the largest bank in the Nordic region, put a stop to Facebook investments for three months because “we see that the risks related to governance around data protection may have been severely compromised,” it said in a statement.

Last week, we began discussing the five pillars of data governance readiness to ensure the data management foundation is in place for mitigating risks, as well as accomplishing other organizational goals. There can be no doubt that data governance is central to an organization’s customer relationships, reputation and financial results.

So today, we’re going to explore the first pillar of DG readiness: initiative sponsorship. Without initiative sponsorship, organizations will struggle to obtain the funding, resources, support and alignment necessary for successful implementation and subsequent performance.

A Common Roadblock

Data governance isn’t a one-off project with a defined endpoint. It’s an on-going initiative that requires active engagement from executives and business leaders. But unfortunately, the 2018 State of Data Governance Report finds lack of executive support to be the most common roadblock to implementing DG.

This is historical baggage. Traditional DG has been an isolated program housed within IT, and thus, constrained within that department’s budget and resources. More significantly, managing DG solely within IT prevented those in the organization with the most knowledge of and investment in the data from participating in the process.

This silo created problems ranging from a lack of context in data cataloging to poor data quality and a sub-par understanding of the data’s associated risks. Data Governance 2.0 addresses these issues by opening data governance to the whole organization.

Its collaborative approach ensures that those with the most significant stake in an organization’s data are intrinsically involved in discovering, understanding, governing and socializing it to produce the desired outcomes. In this era of data-driven business, C-level executives and department leaders are key stakeholders.

But they must be able to trust it and then collaborate based on their role-specific insights to make informed decisions about strategy, identify new opportunities, address redundancies and improve processes.

So, it all comes back to modern data governance: the ability to understand critical enterprise data within a business context, track its physical existence and lineage, and maximize its value while ensuring quality and security.

Initiative Sponsorship: Encouraging Executive Involvement

This week’s headlines about Facebook have certainly gotten Mark Zuckerberg’s attention, as there are calls for the CEO to appear before the U.S. Congress and British Parliament to answer for his company’s data handling – or mishandling as it is alleged.

Public embarrassment, Federal Trade Commission and GDPR fines, erosion of customer trust/loyalty, revenue loss and company devaluation are real risks when it comes to poor data management and governance practices. Facebook may have just elevated your case for implementing DG 2.0 and involving your executives.

Initiative Sponsorship Data Governance GDPR

Business heads and their teams, after all, are the ones who have the knowledge about the data – what it is, what it means, who and what processes use it and why, and what rules and policies should apply to it. Without their perspective and participation in data governance, the enterprise’s ability to intelligently lock down risks and enable growth will be seriously compromised.

Appropriately implemented – with business data stakeholders driving alignment between DG and strategic enterprise goals and IT handling the technical mechanics of data management – the door opens to trusting data and using it effectively.

Also, a chief data officer (CDO) can serve as the bridge between IT and the business to remove silos in the drive toward DG and subsequent whole-of-business outcomes. He or she would be the ultimate sponsor, leading the charge for the necessary funding, resources, and support for a successful, ongoing initiative.

Initiative Sponsorship with an ‘EDGE’

Once key business leaders understand and buy into the vital role they play in a Data Governance 2.0 strategy, the work of building the infrastructure enabling the workforce and processes to support actively governing data assets and their alignment to the business begins.

To find it, map it, make sure it’s under control, and promote it to appropriate personnel requires a technology- and business-enabling platform that covers the entire data governance lifecycle across all data producer and consumer roles.

The erwin EDGE delivers an ‘enterprise data governance experience’ to unify critical DG domains, use role-appropriate interfaces to bring together stakeholders and processes to support a culture committed to acknowledging data as the mission-critical asset that it is, and orchestrate the key mechanisms that are required to discover, fully understand, actively govern and effectively socialize and align data to the business.

To assess your organizations current data governance readiness, take the erwin DG RediChek.

To learn more about the erwin EDGE, reserve your seat for this webinar.

Take the DG RediChek

Categories
erwin Expert Blog

Data Governance Readiness: The Five Pillars

In light of the General Data Protection Regulation (GDPR) taking effect in just three months, an understanding of data governance readiness has become paramount. Organizations need to make sure they’re ready to meet the world’s most comprehensive data privacy law’s requirements:

  • Understanding all the systems in which personal data is located and all the interactions that touch it
  • Knowing the original instance of the data plus its entire lineage and how it’s handled across the complete ecosystem
  • Ensuring changes, purges or other customer requests are adhered to in a timely manner
  • Notifying customers of a data breach within 72 hours

GDPR becomes effective in an age of rapidly proliferating customer data. For organizations to meet its demands, data governance (DG) must become operational. Done right, it holds great promise not only for regulatory compliance but also for creating data-driven opportunities that drive innovation and greater value.

The 2018 State of Data Governance Report shows that customer trust/satisfaction, decision-making, reputation management, analytics and Big Data are the key drivers of data governance adoption, behind meeting regulatory obligations.

Data Governance Readiness: Data Governance Drivers

A Question of Approach

There’s no question data governance is important and should be the cornerstone of data management to both reduce risks and realize larger organizational results, such as increasing customer satisfaction, improving decision-making, enhancing operational efficiency and growing revenue. The question is how to implement DG, so it does all that.

The boom in data-driven business, as well as new regulatory pressures, have thrust DG into a new spotlight. But the historical approach to DG, being housed in IT siloed from the parties who could use it the most, won’t work in the age of digital power brands like Airbnb, Amazon and Uber.

Data governance done right requires the participation of the entire enterprise and should be measured and measurable in the context of the business. Fortunately, Data Governance 2.0 builds on the principle that everyone in the organization has a role in the initiative, which is ongoing.

IT handles the technical mechanics of data management, but data governance is everyone’s business with stakeholders outside IT responsible for aligning DG with strategic organizational goals.

This creates an environment in which data is treated as an organizational asset that must be inventoried and protected as any physical asset, but it also can be understood in context and shared to unleash greater potential.

The Pillars of Data Governance Readiness

If you accept that data governance is a must for understanding critical data within a business context, tracking its physical existence and lineage, and maximizing its security, quality and value, are you ready to implement it as an enterprise initiative?

We’ve identified what we believe to be the five pillars of data governance readiness.

  1. Initiative Sponsorship

Without executive sponsorship, you’ll have difficulty obtaining the funding, resources, support and alignment necessary for successful DG. 

  1. Organizational Support

DG needs to be integrated into the data stewardship teams and wider culture. It also requires funding.

  1. Team Resources

Most successful organizations have established a formal data management group at the enterprise level. As a foundational component of enterprise data management, DG would reside in such a group.

  1. Enterprise Data Management Methodology

DG is foundational to enterprise data management. Without the other essential components (e.g., metadata management, enterprise data architecture, data quality management), DG will be struggle.

  1. Delivery Capability

Successful and sustainable DG initiatives are supported by specialized tools, which are scoped as part of the DG initiative’s technical requirements.

We’re going to explore these pillars of data governance readiness in future blog posts and through a new, free app to help you build – or shore up – your data governance initiative. By applying them, you’ll establish a solid data governance foundation to achieve the desired outcomes, from limiting the risk of data exposures to growing revenue.

In the meantime, you might want to check out our latest white paper that focuses on the impending GDPR and how to increase DG expertise because no organization with even one customer in the EU is outside its grasp. Click here to get the white paper.

Data Governance and GDPR: GDPR and Your Business Whitepaper

Categories
erwin Expert Blog

Understanding and Justifying Data Governance 2.0

In the past, justifying data governance was notoriously difficult. The siloed nature of Data Governance 1.0, and its lack of focus on adding value meant buy-in was low.

While housing data governance (DG) within IT might have made sense in its early stage, data and data governance has evolved.

Today, we generate a staggering 2.5 quintillion bytes of data per day. With growing regulatory demands and the opportunities of infonomics, data search and discovery from an IT silo aren’t enough.

Data governance as a practice, and the solutions that power it, must be part of an organization’s culture to ensure the people and departments that use data are involved in its discovery, understanding, governance and socialization for peak performance.

So, how do you go about justifying data governance as an enterprise-wide initiative?

Justifying Data Governance – The Roadblocks

First, we must look at the shortcomings of the Data Governance 1.0 approach that are clearly reflected in the 2018 State of Data Governance Report. The lack of executive support is cited as the most common roadblock to implementing data governance at 42%, with a lack of organizational support closely following at 39%.

For data-driven enterprises, executives arguably have the biggest stake in improving DG practices. Decisions surrounding strategic direction – e.g., emerging markets to target, insights into operational efficiency, performance of marketing campaigns – are best made with accurate data.

By implementing a sound data governance initiative, data availability and context improves so employees – from executives to the front line – can make better and faster decisions. Additionally, decisions will be made with more confidence, knowing the data can be trusted. As a result, there will be fewer risks, false starts and wasted budgets on projects doomed to fail because they were based on faulty premises.

The State of DG Report also found a lack of effective tools to be another roadblock to successfully implementing data governance. This is no surprise because they weren’t built with collaboration in mind.

As mentioned, the data produced by modern society – and business – is staggering, and it permeates the whole business. Furthermore, data regulations – such as GDPR – demand that organizations understand their data lineage, being able to show who has access to what.

Governing massive volumes of data and being able to demonstrate its lineage from department to department and employee to employee fundamentally requires a collaborative approach.

Another area in which Data Governance 1.0 fell short was in articulating a business case. Of the organizations surveyed for the State of DG Report, 27% say this as a roadblock to successful data governance.

Those frustrations are understandable, as DG 1.0 wasn’t conceived for proactively adding value. But DG 2.0 has opened significant opportunities for organizations to add value, so data governance is easier to justify as a means of identifying and implementing new ideas and improvements more quickly.

For example, financial services companies stand to generate $30 billion in extra revenue through better governance of their data.

Justifying Data Governance – A New Direction

Data Governance 2.0 ploughs through the roadblocks associated with old-school DG.

It takes an enterprise-wide approach to ensure data governance really works, meaning “data owners” and “data stakeholders” are involved in the cataloging process. Everyone benefits from having access to data in context to their roles with a better grasp of its history and lineage.

Of course, regulatory compliance is the main driver for revisiting or implementing a DG initiative. However, the benefits of data governance go well beyond GDPR compliance. Better data quality, context and lineage lead to greater customer satisfaction, improved decision-making and the ability to maintain or even enhance an organization’s reputation – all mentioned as reasons to implement DG in the State of DG Report.

Indeed, understanding and governing enterprise assets has become more important to the C-suite. And DG 2.0 presupposes that CTOs in addition to CFOs, CMOs and other business executives are involved in data management on a day-to day basis. Therefore, they have to be part of the initiative and enabled to share information for agile innovation and business transformation.

It’s clear this new, proactive take on data governance is catching on. The hyper-competitive nature of data-driven business demands it – with or without the threat of GDPR penalties.  Organizations reluctant or slow to adopt Data Governance 2.0 will be left behind.

To get the full State of DG Report, including survey results and insights, click here.

State of DG: Get the full report

Categories
erwin Expert Blog

State of DG: Shocking Number of Organizations Unprepared for GDPR, Is Yours?

The General Data Protection Regulation (GDPR) goes into effect in May, but a new study reveals that most organizations are overwhelmingly unprepared.

The State of Data Governance Report finds that only 6% of respondents consider themselves completely prepared for GDPR. That means a shocking 94% of the organizations surveyed are not ready for what is one of the most important data privacy and security regulations passed in recent years.

Failure to implement data governance (DG) to comply with GDPR will leave these organizations liable for fines of up to €20 million or 4% annual global turnover – whichever is greater.

But the news isn’t all bad; promising signs can be found. Although 46% of those surveyed indicate having “no formal strategy” in place for DG, 42% describe their data governance initiatives as a “work in progress.”

State of DG: Regulatory Compliance Driving Data Governance

Historically, data governance has left a lot to be desired. The value and ROI were insignificant to non-existent, and so executive buy-in and funding also has been low.

Business leaders usually left DG to their IT departments, but that created silos that cut off DG from it’s day to day “data owners” and “data stakeholders,” – in essence, everybody that uses data to drive business. With poor data discovery, lineage and context, data governance was largely abandoned or at least out of sight, out of mind.

Forty-two percent of the organizations participating in the State of DG Report survey indicate that lack of executive support is still a roadblock. But GDPR is spurring new interest in DG because companies must articulate what their data is, where it resides, what controls are in place to protect it, and the measures they will use to address mistakes/breaches.

An effective data governance initiative is critical for the data visibility and categorization needed to comply with GDPR. It also will help assess and prioritize data risks and enable easier verification of GDPR compliance to auditors.

Perhaps this is why 66% of those surveyed for the State of DG Report say understanding and governing enterprise assets has become more important or very important for their executives. And regulatory compliance is in fact the No. 1 driver for data governance.

State of DG: Implementing Data Governance for GDPR

It’s safe to say that organizations should be much further along with GDPR than they are.

The biggest challenge is to establish compliance with their current data architectures and then to build GDPR compliance into the processes for designing and deploying new data sources.

This requires visibility into the strategic roadmap and well-defined processes to govern new data deployments so that constant GDPR retrofits aren’t required.

Thankfully data governance has evolved from a siloed, IT-owned program primarily for data cataloging to support search and discovery. It has given way to proactive, enterprise-wide data governance to support regulatory compliance in addition to data-driven insights for achieving other organizational objectives.

Data Governance 2.0 understands that CTOs, CMOs and other C-level executives and business leaders across the enterprise are involved in data creation, management and use on a day-to-day basis. And GDPR compliance requires that all stakeholders be aware and empowered so that data governance is built in, and part of the culture.

By integrating data governance with enterprise architecture, business process and data modeling, you’ll have a GDPR compliance framework to:

  • Discover and harvest data assets
  • Classify data and create a GDPR inventory
  • Perform GDPR risk analysis
  • Define GDPR controls and standard operating procedures
  • Socialize and apply GDPR requirements across the organization
  • Implement GDPR controls into IT and business roadmaps for “compliance by design”
  • Prove compliance/respond to audits

Is your organization GDPR-ready?

Click here to get your State of DG Report to see how your organization compares to those we surveyed.

Of if you’d like to discuss how to improve your GDPR readiness with one of our solution specialists, click here.

State of DG: Get the full report

Categories
erwin Expert Blog Data Governance

The Top Five Data Governance Use Cases and Drivers

As the applications for data have grown, so too have the data governance use cases. And the legacy, IT-only approach to data governance, Data Governance 1.0, has made way for the collaborative, enterprise-wide Data Governance 2.0.

In addition to increasing data applications, Data Governance 1.0’s decline is being hastened by recurrent failings in its implementation. Leaving it to IT, with no input from the wider business, ignores the desired business outcomes and the opportunities to contribute to and speed their accomplishment. Lack of input from the departments that use the data also causes data quality and completeness to suffer.

So Data Governance 1.0 was destined to fail in yielding a significant return. But changing regulatory requirements and mega-disruptors effectively leveraging data has spawned new interest in making data governance work.

The 2018 State of Data Governance Report indicates that 98% of organizations consider data governance important. Furthermore, 66% of respondents say that understanding and governing enterprise assets has become more or very important for their executives.

Below, we consider the primary data governance use cases and drivers as outlined in this report.

The Top 5 Data Governance Use Cases

1. Changing Regulatory Requirements

Changing regulations are undoubtedly the biggest driver for data governance. The European Union’s General Data Protection Regulation (GDPR) will soon take effect, and it’s the first attempt at a near-global, uniform approach to regulating the way organizations use and store data.

Data governance is mandatory under the new law, and failure to comply will leave organizations liable for huge fines – up to €20 million or 4% of the company’s global annual turnover. For context, GDPR fines could wipe off two percentage points of revenue from Google parent company, Alphabet.

Although 60% of the organizations surveyed for the State of DG Report indicate that regulatory compliance is the key driver for implementing data governance, only 6% of enterprises are prepared for GDPR with less than four months to go.

But data governance use cases go beyond just compliance.

2. Customer Satisfaction

Another primary driver for data governance is improving customer satisfaction, with 49% of our survey respondents citing it.

A Data Governance 2.0 approach is paramount to this use case and should be strong justification to secure C-level buy-in. In fact, the correlation between effective data governance and customer satisfaction is clear. A 2017 report from Aberdeen Group shows that the user-base of organizations with more effective data governance programs are far happier with:

  • The business’ ability to share data (66% – Data Governance Leaders vs. 21% Data Governance followers)
  • Data systems’ ease of use (64% vs. 24%)
  • Speed of information delivery (61% vs. 18%)

3. Decision-Making

Another data governance use case as indicated by the State of DG Report is improved decision-making. Forty-five percent of respondents identify it as the third key driver, and for good reason.

Data governance success manifests itself as well-defined data that is consistent throughout the business, understood across departments, and used to pull the business in the desired direction. It also improves the quality of the data.

By moving data governance out of its IT silo, the employees responsible for business outcomes are part of its governance. This collaboration makes data both more discoverable, more insightful and more contextual.

The decision-making process becomes more efficient, as the velocity at which data can be interpreted increases. The organization can also better interpret and trust the information it is using to determine course.

4. Reputation Management

In the survey behind the State of DG Report, 30% of respondents name reputation management as a driver for DG’s implementation.

We’ve seen it time and time again with high-profile data breaches inflicting the likes of Equifax, Uber and Yahoo. All were met with costly PR fallout. For example, Equifax’s breach had a price tag of $90 million, as of November 2017.

So the discrepancy between the 60% who cite regulatory compliance as a key driver and the 30% who cite reputation management as DG drivers is interesting. One could argue they are the same; both call for data governance to help prevent or at least limit damaging breaches.

The difference might come down to smaller businesses that believe they have less brand equity to maintain. They, as well as some of their larger counterparts, have taken a reactionary approach to data governance. But GDPR should now encourage more proactive data governance across the board.

In terms of data governance use cases for managing the risk of data breaches, consider that data governance, at a fundamental level, is about knowing where your data is, who’s responsible for it, and what it is supposed to be used for.

This understanding enables organizations to focus security spending on the areas of highest risk. Thus, they can take a more cost-effective but thorough approach to risk management.

5. Analytics and Big Data

Analytics and Big Data also were identified as key drivers for data governance among 27% and 20% of respondents, respectively.

The need for data governance in these cases is largely driven by the amount of data businesses are now tasked with overseeing. In terms of volume, Big Data speaks for itself. Twenty-two percent of respondents in the State of DG Report manage more than 10 petabytes of data, which lines up closely with those who identify Big Data as a key driver.

However, the amount of data the average organization without a Big Data strategy consumes, stores and processes has climbed considerably in recent years.

Research indicates that 90% of the world’s data has been created just in the last two years. Globally, we generate 2.5 quintillion bytes a day. Other studies equate data’s value to that of oil, so clearly there’s a lot of value to be found.

However, the “three Vs of data” (volume, velocity, variety) tend to be positively correlated. When one increases, so do the other two. Higher volumes of data mean higher velocities of data that must be processed faster for worthwhile, valuable insights. It also means an increase in the data types – both structured and unstructured – which makes processing more difficult.

A Strong DG Foundation

A strong data governance foundation ensures data is more manageable, and therefore more valuable.

With Data Governance 2.0, data governance use cases shift from reactionary to proactive with a clear focus on business outcomes.

Although new regulations can be seen as bureaucratic and cumbersome, GDPR actually presents organizations with great opportunity – at least for those that choose to take the evolved Data Governance 2.0 path. They will benefit from an outcome-focused DG initiative that adds value beyond just regulatory compliance.

To learn more, download the complete State of Data Governance Report.

2020 Data Governance and Automation Report