Categories
erwin Expert Blog

What’s Business Process Modeling Got to Do with It? – Choosing A BPM Tool

With business process modeling (BPM) being a key component of data governance, choosing a BPM tool is part of a dilemma many businesses either have or will soon face.

Historically, BPM didn’t necessarily have to be tied to an organization’s data governance initiative.

However, data-driven business and the regulations that oversee it are becoming increasingly extensive, so the need to view data governance as a collective effort – in terms of personnel and the tools that make up the strategy – is becoming harder to ignore.

Data governance also relies on business process modeling and analysis to drive improvement, including identifying business practices susceptible to security, compliance or other risks and adding controls to mitigate exposures.

Choosing a BPM Tool: An Overview

As part of a data governance strategy, a BPM tool aids organizations in visualizing their business processes, system interactions and organizational hierarchies to ensure elements are aligned and core operations are optimized.

The right BPM tool also helps organizations increase productivity, reduce errors and mitigate risks to achieve strategic objectives.

With  insights from the BPM tool, you can clarify roles and responsibilities – which in turn should influence an organization’s policies about data ownership and make data lineage easier to manage.

Organizations also can use a BPM tool to identify the staff who function as “unofficial data repositories.” This has both a primary and secondary function:

1. Organizations can document employee processes to ensure vital information isn’t lost should an employee choose to leave.

2. It is easier to identify areas where expertise may need to be bolstered.

Organizations that adopt a BPM tool also enjoy greater process efficiency. This is through a combination of improving existing processes or designing new process flows, eliminating unnecessary or contradictory steps, and documenting results in a shareable format that is easy to understand so the organization is pulling in one direction.

Choosing a BPM Tool

Silo Buster

Understanding the typical use cases for business process modeling is the first step. As with any tech investment, it’s important to understand how the technology will work in the context of your organization/business.

For example, it’s counter-productive to invest in a solution that reduces informational silos only to introduce a new technological silo through a lack of integration.

Ideally, organizations want a BPM tool that works in conjunction with the wider data management platform and data governance initiative – not one that works against them.

That means it must support data imports and integrations from/with external sources, a solution that enables in-tool collaboration to reduce departmental silos, and most crucial, a solution that taps into a central metadata repository to ensure consistency across the whole data management and governance initiatives.

The lack of a central metadata repository is a far too common thorn in an organization’s side. Without it, they have to juggle multiple versions as changes to the underlying data aren’t automatically updated across the platform.

It also means organizations waste crucial time manually manufacturing and maintaining data quality, when an automation framework could achieve the same goal instantaneously, without human error and with greater consistency.

A central metadata repository ensures an organization can acknowledge and get behind a single source of truth. This has a wealth of favorable consequences including greater cohesion across the organization, better data quality and trust, and faster decision-making with less false starts due to plans based on misleading information.

Three Key Questions to Ask When Choosing a BPM Tool

Organizations in the market for a BPM tool should also consider the following:

1. Configurability: Does the tool support the ability to model and analyze business processes with links to data, applications and other aspects of your organization? And how easy is this to achieve?

2. Role-based views: Can the tool develop integrated business models for a single source of truth but with different views for different stakeholders based on their needs – making regulatory compliance more manageable? Does it enable cross-functional and enterprise collaboration through discussion threads, surveys and other social features?

3. Business and IT infrastructure interoperability: How well does the tool integrate with other key components of data governance including enterprise architecture, data modeling, data cataloging and data literacy? Can it aid in providing data intelligence to connect all the pieces of the data management and governance lifecycles?

For more information and to find out how such a solution can integrate with your organization and current data management and data governance initiatives, click here.

BPM Tool - erwin BP powered by Casewise

Categories
erwin Expert Blog

Healthy Co-Dependency: Data Management and Data Governance

Data management and data governance are now more important than ever before. The hyper competitive nature of data-driven business means organizations need to get more out of their data than ever before – and fast.

A few data-driven exemplars have led the way, turning data into actionable insights that influence everything from corporate structure to new products and pricing. “Few” being the operative word.

It’s true, data-driven business is big business. Huge actually. But it’s dominated by a handful of organizations that realized early on what a powerful and disruptive force data can be.

The benefits of such data-driven strategies speak for themselves: Netflix has replaced Blockbuster, and Uber continues to shake up the taxi business. Organizations indiscriminate of industry are following suit, fighting to become the next big, disruptive players.

But in many cases, these attempts have failed or are on the verge of doing so.

Now with the General Data Protection Regulation (GDPR) in effect, data that is unaccounted for is a potential data disaster waiting to happen.

So organizations need to understand that getting more out of their data isn’t necessarily about collecting more data. It’s about unlocking the value of the data they already have.

Data Management and Data Governance Co-Dependency

The Enterprise Data Dilemma

However, most organizations don’t know exactly what data they have or even where some of it is. And some of the data they can account for is going to waste because they don’t have the means to process it. This is especially true of unstructured data types, which organizations are collecting more frequently.

Considering that 73 percent of company data goes unused, it’s safe to assume your organization is dealing with some if not all of these issues.

Big picture, this means your enterprise is missing out on thousands, perhaps millions in revenue.

The smaller picture? You’re struggling to establish a single source of data truth, which contributes to a host of problems:

  • Inaccurate analysis and discrepancies in departmental reporting
  • Inability to manage the amount and variety of data your organization collects
  • Duplications and redundancies in processes
  • Issues determining data ownership, lineage and access
  • Achieving and sustaining compliance

To avoid such circumstances and get more value out of data, organizations need to harmonize their approach to data management and data governance, using a platform of established tools that work in tandem while also enabling collaboration across the enterprise.

Data management drives the design, deployment and operation of systems that deliver operational data assets for analytics purposes.

Data governance delivers these data assets within a business context, tracking their physical existence and lineage, and maximizing their security, quality and value.

Although these two disciplines approach data from different perspectives (IT-driven and business-oriented), they depend on each other. And this co-dependency helps an organization make the most of its data.

The P-M-G Hub

Together, data management and data governance form a critical hub for data preparation, modeling and data governance. How?

It starts with a real-time, accurate picture of the data landscape, including “data at rest” in databases, data warehouses and data lakes and “data in motion” as it is integrated with and used by key applications. That landscape also must be controlled to facilitate collaboration and limit risk.

But knowing what data you have and where it lives is complicated, so you need to create and sustain an enterprise-wide view of and easy access to underlying metadata. That’s a tall order with numerous data types and data sources that were never designed to work together and data infrastructures that have been cobbled together over time with disparate technologies, poor documentation and little thought for downstream integration. So the applications and initiatives that depend on a solid data infrastructure may be compromised, and data analysis based on faulty insights.

However, these issues can be addressed with a strong data management strategy and technology to enable the data quality required by the business, which encompasses data cataloging (integration of data sets from various sources), mapping, versioning, business rules and glossaries maintenance and metadata management (associations and lineage).

Being able to pinpoint what data exists and where must be accompanied by an agreed-upon business understanding of what it all means in common terms that are adopted across the enterprise. Having that consistency is the only way to assure that insights generated by analyses are useful and actionable, regardless of business department or user exploring a question. Additionally, policies, processes and tools that define and control access to data by roles and across workflows are critical for security purposes.

These issues can be addressed with a comprehensive data governance strategy and technology to determine master data sets, discover the impact of potential glossary changes across the enterprise, audit and score adherence to rules, discover risks, and appropriately and cost-effectively apply security to data flows, as well as publish data to people/roles in ways that are meaningful to them.

Data Management and Data Governance: Play Together, Stay Together

When data management and data governance work in concert empowered by the right technology, they inform, guide and optimize each other. The result for an organization that takes such a harmonized approach is automated, real-time, high-quality data pipeline.

Then all stakeholders — data scientists, data stewards, ETL developers, enterprise architects, business analysts, compliance officers, CDOs and CEOs – can access the data they’re authorized to use and base strategic decisions on what is now a full inventory of reliable information.

The erwin EDGE creates an “enterprise data governance experience” through integrated data mapping, business process modeling, enterprise architecture modeling, data modeling and data governance. No other software platform on the market touches every aspect of the data management and data governance lifecycle to automate and accelerate the speed to actionable business insights.

Categories
erwin Expert Blog

Benefits of Process: Why Modern Organizations Need Process-Based Engines

In the current data-driven business climate, the benefits of process and process-based strategy are more desirable to organizations than ever.

Industry regulations and competition traditionally have driven organizational change, but such “transformation” has rarely been comprehensive or truly transformative. Rather, organizational transformation has come in waves, forcing companies and their IT ecosystems to ride them as best as they can – sometimes their fortunes have risen, and sometimes they have waned.

The advent of Brexit and GDPR have again forced today’s organizations to confront external stimuli’s impact on their operations. The difference is that the modern, process-based enterprises can better anticipate these sorts of mandates, incorporate them into their strategic plans, and even leapfrog ahead of their requirements by initiating true internal transformation initiatives – ones based on effectively managed and well-documented business processes.

Shifting Attitudes

Traditional organizations focus almost exclusively on rigid structures, centralized management and accountability; concentrated knowledge; service mainly to external customers; and reactive, short-term strategy alignment driven mainly by massive-scale projects. This traditional approach results in large, unwieldy and primarily reactive organizations that rely either on legacy strengths or inertia for survival.

But as technology evolves and proliferates, more and more organizations are realizing they need to adjust their traditional thinking and subsequent actions, even if just slightly, to gain strategic advantage, reduce costs and retain market dominance. For example:

  • Structures are becoming more adaptable, allowing for greater flexibility and cost management. How is this possible and why now? Organizations are grasping that effective, well-managed and documented business processes should form their operational backbones.
  • Business units and the departments within them are becoming accountable not only for their own budgets but also on how well they achieve their goals. This is possible because their responsibilities and processes can be clearly defined, documented and then monitored to ensure their work is executed in a repeatable, predictable and measurable way.
  • Knowledge is now both centralized and distributed thanks to modern knowledge management systems. Central repositories and collaborative portals give everyone within the organization equal access to the data they need to do their jobs more effectively and efficiently.
  • And thanks to all the above, organizations can expand their focus from external customers to internal ones as well. By clearly identifying individual processes (and their cross-business handover points) and customer touchpoints, organizations can interact with any customer at the right point with the most appropriate resources.

If business drivers are connected to processes with appropriate accountability, they become measurable in dimensions never before possible. Such elements as customer-journey quality and cost, process-delivery efficiency and even bottom-up cost aggregation can be captured. Strategic decision-making then becomes infinitely practical and forward-looking.

With this interconnected process – and information – based ecosystem, management can perform accurate and far-reaching impact analyses, test alternate scenarios, and evaluate their costs and implementation possibilities (and difficulties) to make decisions with full knowledge of their implications. Organizational departments can provide real-time feedback on designs and projects, turning theoretical designs into practical plans with buy-in at the right levels.

Benefits of Process

As stated above, one of the key benefits of process and a process-based organizational engine is that organizations should be able to better handle outside pressures, such as new regulations, if they are – or are becoming – truly process-based. Because once processes (and their encompassing business architecture) become central to the organization, a wide array of things become simpler, faster and cheaper.

The benefits of process don’t stop there either. Application design – the holy grail or black hole of budgetary spending and project management, depending on your point of view – is streamlined, with requirements clearly gathered and managed in perfect correspondence to the processes they serve and with the data they manage clearly documented and communicated to the developers. Testing occurs against real-life scenarios by the responsible parties as documented by the process owners – a drastic departure from the more traditional approaches in which the responsibility fell to designated, usually technical application owners.

Finally – and most important – data governance is no longer the isolated domain of data architects but central to the everyday processes that make an organization tick. As processes have stakeholders who use information – data – the roles of technical owners and data stewards become integral to ensuring processes operate efficiently, effectively and – above all – without interruptions. On the other side of this coin, data owners and data stewards no longer operate in their own worlds, distant from the processes their data supports.

Seizing a Process-Based Future

Process is a key axis along which the modern organization must operate. Data governance is another, with cost management becoming a third driver for the enterprise machine. But as we all know, it takes more than stable connecting rods to make an engine work – it needs cogs and wheels, belts and multiple power sources, all working together.

In the traditional organization, people are the internal mechanics. But one can’t escape visions of Charlie Chaplin’s Modern Times worker hopelessly entangled in the machine on which he was working. That’s why, these days, powerful and flexible workflow engines provide much-needed automation for greater visibility plus more power, stability and quality – all the things a machine needs to operate as required/designed.

Advanced process management systems are becoming essential, not optional. And while not as sexy or attention-grabbing as other technologies, they provide the power to drive an organization toward its goals quickly, cost-effectively and efficiently.

To learn how erwin can empower a modern, process-based organization, please click here.

Data-Driven Business Transformation whitepaper

Categories
erwin Expert Blog

The Connection Between Business Process Modeling and Standard Operating Procedures

We began a new blog series last week on business process (BP) modeling and its role within the enterprise. This week’s focus is on the connection between business process modeling and standard operating procedures. Specifically, using BP tools to help organizations streamline how they manage their standard operating procedures (SOPs).

Standard Operating Procedures: A New Approach to Organizing SOP Information

Manually maintaining the standard operating procedures that inform business processes can be a monster of a task. In most industries, SOPs typically are documented in multiple Word or Excel files.

In a process-centric world, heavy lifting is involved when an organization requires a change to an end-to-end process: Each SOP affected by the change may be associated with dozens or even hundreds of steps that exist between the start and conclusion of the process – and the alteration must be made to all of them wherever they occur.

You can imagine the significant man hours that go into wading through a sea of documents to discover and amend relevant SOPs and communicate these business process-related changes across the organization. And you can guess at the toll on productivity and efficiency that the business experiences as a result.

Companies that are eager to embrace business process optimization are keen to have a better approach to organizing SOP information to improve transparency and insight for speedier and more effective change management.

There’s another benefit to be realized from taking a new approach to SOP knowledge management, as well. With better organization comes an increased ability to convey information about current and changed standard operating procedures; companies can offer on-the-fly access to standard practices to teams across the enterprise.

That consistent and easily obtained business process information can help employees innovate, sharing ideas about additional improvements and innovations that could be made to standard operating procedures. It could also save them the time they might otherwise spend on “reinventing the wheel” for SOPs that already exist but that they don’t know about.

Balfour Beatty Construction, the fourth largest general builder in the U.S., saw big results when it standardized and transformed its process documentation, giving workers access to corporate SOPs from any location on almost any device.

As a construction company, keeping field workers out of danger is a major issue, and providing these employees with immediate information about how to accomplish a multi-step business process – such as clearing a site – can promote their safety. Among benefits it saw were a 5% gain in productivity and a reduction in training time for new employees who were now able to tap directly into SOP data.

Business Process Modeling & Standard Operating Procedures

Using Business Process Modeling to Transform SOP Management

How does a company transform manual SOP documentation to more effectively support change management as part of business process optimization? It’s key to adopt business process (BP) modeling and management software to create and store SOP documentation in a single repository, tying them to the processes they interact with for faster discovery and easier maintenance.

Organizations that move to this methodology, for example, will have the advantage of only needing to change an affected SOP in that one repository; the change automatically will propagate to all related processes and procedures.

In effect, the right BP tool automatically generates new SOPs with the necessary updated information.

Such a tool is also suitable for use in conjunction with controlled document repositories that are typically required in heavily regulated industries, such as pharmaceuticals, financial services and healthcare, as part of satisfying compliance mandates. All SOP documentation already is stored in the same repository, rather than scattered across files.

But a business process diagramming and modeling solution comes in handy in these cases by providing a web-based front-end that exposes high-end processes and how they map to related SOPs. This helps users better navigate them to institute and maintain changes and to access job-related procedure information.

To find out about how erwin can streamline SOP document management to positively impact costs, workloads and user benefits, please click here.

In our next blog, we’ll look at how business process modeling strengthens digital transformation initiatives.

Data-Driven Business Transformation whitepaper

Categories
erwin Expert Blog

erwin Brings NoSQL into the Enterprise Data Modeling and Governance Fold

“NoSQL is not an option — it has become a necessity to support next-generation applications.”

Categories
erwin Expert Blog

Five Steps to Digital Transformation

Digital transformation is ramping up in all industries. Facing regular market disruptions, and landscape-changing technological breakthroughs, modern businesses must be both malleable and willing to change.

To stay competitive, you must be agile.

Digital Transformation is Inevitable

Increasing numbers of organizations are undergoing a digital transformation. The tried-and-tested yet rigid methods of doing business are being replaced by newer, data-orientated approaches that require thorough but fast analysis.

Some businesses – like Amazon, Netflix and Uber – are leading this evolution. They all provide very different services, but at their core, they are technology focused.

And they’re reaping rewards for it too. Amazon is one of the most valuable businesses in the world, perhaps one of the first companies to reach a $1-trillion valuation.

It’s not too late to adopt digital transformation, but it is  too late to keep fighting against it. The tide of change has quickened, and stubborn businesses could be washed away.

But what’s the best way to get started?

Step One: Determine Your End Goal

Any form of change must start with the end in mind, as it’s impossible to make a transformation without understanding why and how.

Before you make a change, big or small, you need to ask yourself why are we doing this? What are the positives and negatives? And if there are negatives, what can we do to mitigate them?

To ensure a successful digital transformation, it’s important to plot your journey from the beginning through your end goal, understanding how one change or a whole series of changes will alter your business.

Business process modeling tools can help map your digital transformation journey.

Step Two: Get Some Strategic Support

For businesses of any size, transformational change can disrupt day-to-day operations. In most organizations, the expertise to manage a sizeable transformation program doesn’t exist, and from the outset, it can appear quite daunting.

If your goal is to increase profits, it can seem contradictory to pay for support to drive your business forward. However, a slow or incorrect transformational process can be costly in many ways. Therefore, investing in support can be one of the best decisions you make.

Effective strategic planning, rooted in enterprise architecture, can help identify gaps and potential oversights in your strategy. It can indicate where investment is needed and ensure transformative endeavors aren’t undermined by false-starts and U-turns.

Many businesses would benefit further by employing strategic consultants. As experts in their fields, strategic consultants know the right questions to ask to uncover the information you need to influence change.

Their experience can support your efforts by identifying and cataloging underlying components, providing input to the project plan and building the right systems to capture important data needed to meet the business’s transformation goals.

Step Three: Understand What You Have

Once you know where you want to go, it’s important to understand what you currently do. That might seem clear, but even the smallest organizations are underpinned by thousands of business processes.

Before you decide to change something, you need to understand everything about what you currently do, or else a change could have an unanticipated and negative impact.

Enterprise architecture will also benefit a business here, uncovering strategic improvement opportunities – valuable changes you might not have seen.

As third-parties, consultants can provide an impartial view, rather than letting historic or legacy decisions cloud future judgment.

Businesses will also benefit from data modeling. This is due to the exponential increase in the volume of data businesses have to manage – as well as the variety of disparate sources.

Data modeling will ensure data is accessible, understood and better prepared for analysis and the decision-making process.

Step Four: Collect Knowledge from Within

Your employees are a wealth of knowledge and ideas, so it’s important to involve them in the enterprise architecture process.

Consultants can facilitate a series of staff workshops to enable employee insights to be shared and then developed into real, actionable changes.

Step Five: Get Buy-in Across the Business

Once you’ve engaged with your staff to collect the knowledge they hold, make sure you don’t cut them off there. Business change is only successful if everyone understands what is happening and why, with continuous updates.

Ensure that you take your employees through the change process, making them  part of the digital transformation journey.

Evidence suggests that 70 percent of all organizational change efforts fail, with a primary reason being that executives don’t get enough buy-in for new initiatives and ideas.

By involving relevant stakeholders in the strategic planning process, you can mitigate this risk. Strategic planning tools that enable collaboration can achieve this. Thanks to technological advancements in the cloud, collaboration can even be effectively facilitated online.

Take your employees through your digital transformation journey, and you’ll find them celebrating with you when you arrive at your goal.

If you think now is the right time for your business to change, get in touch with us today.

Data-Driven Business Transformation

Categories
erwin Expert Blog

What Are Customer Journey Architects, and Do You Need One?

Customer journey architects are becoming more relevant than ever before.

For businesses that want to make improvements, enterprise architecture has long been a tried and tested technique for mapping out how change should take place.

Categories
erwin Expert Blog

Enterprise Architecture vs. Data Architecture vs. Business Process Architecture

Despite the nomenclature, enterprise architecture, data architecture and business process architecture are very different disciplines. Despite this, organizations that combine the disciplines enjoy much greater success in data management.

Both an understanding of the differences between the three and an understanding of how the three work together, has to start with understanding the disciplines individually:

What is Enterprise Architecture?

Enterprise architecture defines the structure and operation of an organization. Its desired outcome is to determine current and future objectives and translate those goals into a blueprint of IT capabilities.

A useful analogy for understanding enterprise architecture is city planning. A city planner devises the blueprint for how a city will come together, and how it will be interacted with. They need to be cognizant of regulations (zoning laws) and understand the current state of city and its infrastructure.

A good city planner means less false starts, less waste and a faster, more efficient carrying out of the project.

In this respect, a good enterprise architect is a lot like a good city planner.

What is Data Architecture?

The Data Management Body of Knowledge (DMBOK), define data architecture as  “specifications used to describe existing state, define data requirements, guide data integration, and control data assets as put forth in a data strategy.”

So data architecture involves models, policy rules or standards that govern what data is collected and how it is stored, arranged, integrated and used within an organization and its various systems. The desired outcome is enabling stakeholders to see business-critical information regardless of its source and relate to it from their unique perspectives.

There is some crossover between enterprise and data architecture. This is because data architecture is inherently an offshoot of enterprise architecture. Where enterprise architects take a holistic, enterprise-wide view in their duties, data architects tasks are much more refined, and focussed. If an enterprise architect is the city planner, then a data architect is an infrastructure specialist – think plumbers, electricians etc.

For a more in depth look into enterprise architecture vs data architecture, see: The Difference Between Data Architecture and Enterprise Architecture

What is Business Process Architecture?

Business process architecture describes an organization’s business model, strategy, goals and performance metrics.

It provides organizations with a method of representing the elements of their business and how they interact with the aim of aligning people, processes, data, technologies and applications to meet organizational objectives. With it, organizations can paint a real-world picture of how they function, including opportunities to create, improve, harmonize or eliminate processes to improve overall performance and profitability.

Enterprise, Data and Business Process Architecture in Action

A successful data-driven business combines enterprise architecture, data architecture and business process architecture. Integrating these disciplines from the ground up ensures a solid digital foundation on which to build. A strong foundation is necessary because of the amount of data businesses already have to manage. In the last two years, more data has been created than in all of humanity’s history.

And it’s still soaring. Analysts predict that by 2020, we’ll create about 1.7 megabytes of new information every second for every human being on the planet.

While it’s a lot to manage, the potential gains of becoming a data-driven enterprise are too high to ignore. Fortune 1000 companies could potentially net an additional $65 million in income with access to just 10 percent more of their data.

To effectively employ enterprise architecture, data architecture and business process architecture, it’s important to know the differences in how they operate and their desired business outcomes.Enterprise Architecture, Data Architecture and Business Process Architecture

Combining Enterprise, Data and Business Process Architecture for Better Data Management

Historically, these three disciplines have been siloed, without an inherent means of sharing information. Therefore, collaboration between the tools and relevant stakeholders has been difficult.

To truly power a data-driven business, removing these silos is paramount, so as not to limit the potential analysis your organization can carry out. Businesses that understand and adopt this approach will benefit from much better data management when it comes to the ‘3 Vs.’

They’ll be better able to cope with the massive volumes of data a data-driven business will introduce; be better equipped to handle increased velocity of data, processing data accurately and quickly in order to keep time to markets low; and be able to effectively manage data from a growing variety of different sources.

In essence, enabling collaboration between enterprise architecture, data architecture and business process architecture helps an organization manage “any data, anywhere” – or Any2. This all-encompassing view provides the potential for deeper data analysis.

However, attempting to manage all your data without all the necessary tools is like trying to read a book without all the chapters. And trying to manage data with a host of uncollaborative, disparate tools is like trying to read a story with chapters from different books. Clearly neither approach is ideal.

Unifying the disciplines as the foundation for data management provides organizations with the whole ‘data story.’

The importance of getting the whole data story should be very clear considering the aforementioned statistic – Fortune 1000 companies could potentially net an additional $65 million in income with access to just 10 percent more of their data.

Download our eBook, Solving the Enterprise Data Dilemma to learn more about data management tools, particularly enterprise architecture, data architecture and business process architecture, working in tandem.

Categories
erwin Expert Blog

Data-Driven Business – Changing Perspective

Data-driven business is booming. The dominant, driving force in business has arguably become a driving force in our daily lives for consumers and corporations alike.

We now live in an age in which data is a more valuable resource than oil, and five of the world’s most valuable companies – Alphabet/Google, Amazon, Apple, Facebook and Microsoft – all deal in data.

However, just acknowledging data’s value won’t do. For a business to truly benefit from its information, a change in perspective is also required. With an additional $65 million in net income available to Fortune 1000 companies that make use of just 10 percent more of their data, the stakes are too high to ignore.

Changing Perspective

Traditionally, data management only concerned data professionals. However, mass digital transformation, with data as the foundation, puts this traditional approach at odds with current market needs. Siloing data with data professionals undermines the opportunity to apply data to improve overall business performance.

The precedent is there. Some of the most disruptive businesses of the last decade have doubled down on the data-driven approach, reaping huge rewards for it.

Airbnb, Netflix and Uber have used data to transform everything, including how they make decisions, invent new products or services, and improve processes to add to both their top and bottom lines. And they have shaken their respective markets to their cores.

Even with very different offerings, all three of these businesses identify under the technology banner – that’s telling.

Common Goals

One key reason for the success of data-driven business, is the alignment of common C-suite goals with the outcomes of a data initiative.

Those goals being:

  • Identifying opportunities and risk
  • Strengthening marketing and sales
  • Improving operational and financial performance
  • Managing risk and compliance
  • Producing new products and services, or improve existing ones
  • Monetizing data
  • Satisfying customers

This list of C-suite goals is, in essence, identical to the business outcomes of a data-driven business strategy.

What Your Data Strategy Needs

In the early stages of data transformation, businesses tend to take an ad-hoc approach to data management. Although that might be viable in the beginning, a holistic data-driven strategy requires more than makeshift efforts, and repurposed Office tools .

Organizations that truly embrace data, becoming fundamentally data-driven businesses, will have to manage data from numerous and disparate sources (variety) in increasingly large quantities (volume) and at demandingly high speeds (velocity).

To manage these three Vs of data effectively, your business needs to take an “any-squared” (Any2) approach. That’s “any data” from “anywhere.”

Any2

By leveraging a data management platform with data modeling, enterprise architecture and business process modelling, you can ensure your organization is prepared to undergo a successful digital transformation.

Data modeling identifies what data you have (internal and external), enterprise architecture determines how best to use that data to drive value, and business process modeling provides understanding in how the data should be used to drive business strategy and objectives.

Therefore, the application of the above disciplines and associated tools goes a long way in achieving the common goals of C-suite executives.

For more data advice and best practices, follow us on Twitter, and LinkedIn to stay up to date with the blog.

For a deeper dive into best practices for data, its benefits, and its applications, get the FREE whitepaper below.

Data-Driven Business Transformation

Categories
erwin Expert Blog

Where to begin business process modeling?

Knowing where to begin business process modeling can seem impossible – you have a wealth of information spread out in front of you and no clue where to start.