Categories
erwin Expert Blog

What’s Business Process Modeling Got to Do with It? – Choosing A BPM Tool

With business process modeling (BPM) being a key component of data governance, choosing a BPM tool is part of a dilemma many businesses either have or will soon face.

Historically, BPM didn’t necessarily have to be tied to an organization’s data governance initiative.

However, data-driven business and the regulations that oversee it are becoming increasingly extensive, so the need to view data governance as a collective effort – in terms of personnel and the tools that make up the strategy – is becoming harder to ignore.

Data governance also relies on business process modeling and analysis to drive improvement, including identifying business practices susceptible to security, compliance or other risks and adding controls to mitigate exposures.

Choosing a BPM Tool: An Overview

As part of a data governance strategy, a BPM tool aids organizations in visualizing their business processes, system interactions and organizational hierarchies to ensure elements are aligned and core operations are optimized.

The right BPM tool also helps organizations increase productivity, reduce errors and mitigate risks to achieve strategic objectives.

With  insights from the BPM tool, you can clarify roles and responsibilities – which in turn should influence an organization’s policies about data ownership and make data lineage easier to manage.

Organizations also can use a BPM tool to identify the staff who function as “unofficial data repositories.” This has both a primary and secondary function:

1. Organizations can document employee processes to ensure vital information isn’t lost should an employee choose to leave.

2. It is easier to identify areas where expertise may need to be bolstered.

Organizations that adopt a BPM tool also enjoy greater process efficiency. This is through a combination of improving existing processes or designing new process flows, eliminating unnecessary or contradictory steps, and documenting results in a shareable format that is easy to understand so the organization is pulling in one direction.

Choosing a BPM Tool

Silo Buster

Understanding the typical use cases for business process modeling is the first step. As with any tech investment, it’s important to understand how the technology will work in the context of your organization/business.

For example, it’s counter-productive to invest in a solution that reduces informational silos only to introduce a new technological silo through a lack of integration.

Ideally, organizations want a BPM tool that works in conjunction with the wider data management platform and data governance initiative – not one that works against them.

That means it must support data imports and integrations from/with external sources, a solution that enables in-tool collaboration to reduce departmental silos, and most crucial, a solution that taps into a central metadata repository to ensure consistency across the whole data management and governance initiatives.

The lack of a central metadata repository is a far too common thorn in an organization’s side. Without it, they have to juggle multiple versions as changes to the underlying data aren’t automatically updated across the platform.

It also means organizations waste crucial time manually manufacturing and maintaining data quality, when an automation framework could achieve the same goal instantaneously, without human error and with greater consistency.

A central metadata repository ensures an organization can acknowledge and get behind a single source of truth. This has a wealth of favorable consequences including greater cohesion across the organization, better data quality and trust, and faster decision-making with less false starts due to plans based on misleading information.

Three Key Questions to Ask When Choosing a BPM Tool

Organizations in the market for a BPM tool should also consider the following:

1. Configurability: Does the tool support the ability to model and analyze business processes with links to data, applications and other aspects of your organization? And how easy is this to achieve?

2. Role-based views: Can the tool develop integrated business models for a single source of truth but with different views for different stakeholders based on their needs – making regulatory compliance more manageable? Does it enable cross-functional and enterprise collaboration through discussion threads, surveys and other social features?

3. Business and IT infrastructure interoperability: How well does the tool integrate with other key components of data governance including enterprise architecture, data modeling, data cataloging and data literacy? Can it aid in providing data intelligence to connect all the pieces of the data management and governance lifecycles?

For more information and to find out how such a solution can integrate with your organization and current data management and data governance initiatives, click here.

BPM Tool - erwin BP powered by Casewise

Categories
erwin Expert Blog

Google’s Record GDPR Fine: Avoiding This Fate with Data Governance

The General Data Protection Regulation (GDPR) made its first real impact as Google’s record GDPR fine dominated news cycles.

Historically, fines had peaked at six figures with the U.K.’s Information Commissioner’s Office (ICO) fines of 500,000 pounds ($650,000 USD) against both Facebook and Equifax for their data protection breaches.

Experts predicted an uptick in GDPR enforcement in 2019, and Google’s recent record GDPR fine has brought that to fruition. France’s data privacy enforcement agency hit the tech giant with a $57 million penalty – more than 80 times the steepest ICO fine.

If it can happen to Google, no organization is safe. Many in fact still lag in the GDPR compliance department. Cisco’s 2019 Data Privacy Benchmark Study reveals that only 59 percent of organizations are meeting “all or most” of GDPR’s requirements.

So many more GDPR violations are likely to come to light. And even organizations that are currently compliant can’t afford to let their data governance standards slip.

Data Governance for GDPR

Google’s record GDPR fine makes the rationale for better data governance clear enough. However, the Cisco report offers even more insight into the value of achieving and maintaining compliance.

Organizations with GDPR-compliant security measures are not only less likely to suffer a breach (74 percent vs. 89 percent), but the breaches suffered are less costly too, with fewer records affected.

However, applying such GDPR-compliant provisions can’t be done on a whim; organizations must expand their data governance practices to include compliance.

GDPR White Paper

A robust data governance initiative provides a comprehensive picture of an organization’s systems and the units of data contained or used within them. This understanding encompasses not only the original instance of a data unit but also its lineage and how it has been handled and processed across an organization’s ecosystem.

With this information, organizations can apply the relevant degrees of security where necessary, ensuring expansive and efficient protection from external (i.e., breaches) and internal (i.e., mismanaged permissions) data security threats.

Although data security cannot be wholly guaranteed, these measures can help identify and contain breaches to minimize the fallout.

Looking at Google’s Record GDPR Fine as An Opportunity

The tertiary benefits of GDPR compliance include greater agility and innovation and better data discovery and management. So arguably, the “tertiary” benefits of data governance should take center stage.

While once exploited by such innovators as Amazon and Netflix, data optimization and governance is now on everyone’s radar.

So organization’s need another competitive differentiator.

An enterprise data governance experience (EDGE) provides just that.

THE REGULATORY RATIONALE FOR INTEGRATING DATA MANAGEMENT & DATA GOVERNANCE

This approach unifies data management and data governance, ensuring that the data landscape, policies, procedures and metrics stem from a central source of truth so data can be trusted at any point throughout its enterprise journey.

With an EDGE, the Any2 (any data from anywhere) data management philosophy applies – whether structured or unstructured, in the cloud or on premise. An organization’s data preparation (data mapping), enterprise modeling (business, enterprise and data) and data governance practices all draw from a single metadata repository.

In fact, metadata from a multitude of enterprise systems can be harvested and cataloged automatically. And with intelligent data discovery, sensitive data can be tagged and governed automatically as well – think GDPR as well as HIPAA, BCBS and CCPA.

Organizations without an EDGE can still achieve regulatory compliance, but data silos and the associated bottlenecks are unavoidable without integration and automation – not to mention longer timeframes and higher costs.

To get an “edge” on your competition, consider the erwin EDGE platform for greater control over and value from your data assets.

Data preparation/mapping is a great starting point and a key component of the software portfolio. Join us for a weekly demo.

Automate Data Mapping

Categories
erwin Expert Blog

The Unified Data Platform – Connecting Everything That Matters

Businesses stand to gain a lot from a unified data platform.

This decade has seen data-driven leaders dominate their respective markets and inspire other organizations across the board to use data to fuel their businesses, leveraging this strategic asset to create more value below the surface. It’s even been dubbed “the new oil,” but data is arguably more valuable than the analogy suggests.

Data governance (DG) is a key component of the data value chain because it connects people, processes and technology as they relate to the creation and use of data. It equips organizations to better deal with  increasing data volumes, the variety of data sources, and the speed in which data is processed.

But for an organization to realize and maximize its true data-driven potential, a unified data platform is required. Only then can all data assets be discovered, understood, governed and socialized to produce the desired business outcomes while also reducing data-related risks.

Benefits of a Unified Data Platform

Data governance can’t succeed in a bubble; it has to be connected to the rest of the enterprise. Whether strategic, such as risk and compliance management, or operational, like a centralized help desk, your data governance framework should span and support the entire enterprise and its objectives, which it can’t do from a silo.

Let’s look at some of the benefits of a unified data platform with data governance as the key connection point.

Understand current and future state architecture with business-focused outcomes:

A unified data platform with a single metadata repository connects data governance to the roles, goals strategies and KPIs of the enterprise. Through integrated enterprise architecture modeling, organizations can capture, analyze and incorporate the structure and priorities of the enterprise and related initiatives.

This capability allows you to plan, align, deploy and communicate a high-impact data governance framework and roadmap that sets manageable expectations and measures success with metrics important to the business.

Document capabilities and processes and understand critical paths:

A unified data platform connects data governance to what you do as a business and the details of how you do it. It enables organizations to document and integrate their business capabilities and operational processes with the critical data that serves them.

It also provides visibility and control by identifying the critical paths that will have the greatest impacts on the business.

Realize the value of your organization’s data:

A unified data platform connects data governance to specific business use cases. The value of data is realized by combining different elements to answer a business question or meet a specific requirement. Conceptual and logical schemas and models provide a much richer understanding of how data is related and combined to drive business value.

2020 Data Governance and Automation Report

Harmonize data governance and data management to drive high-quality deliverables:

A unified data platform connects data governance to the orchestration and preparation of data to drive the business, governing data throughout the entire lifecycle – from creation to consumption.

Governing the data management processes that make data available is of equal importance. By harmonizing the data governance and data management lifecycles, organizations can drive high-quality deliverables that are governed from day one.

Promote a business glossary for unanimous understanding of data terminology:

A unified data platform connects data governance to the language of the business when discussing and describing data. Understanding the terminology and semantic meaning of data from a business perspective is imperative, but most business consumers of data don’t have technical backgrounds.

A business glossary promotes data fluency across the organization and vital collaboration between different stakeholders within the data value chain, ensuring all data-related initiatives are aligned and business-driven.

Instill a culture of personal responsibility for data governance:

A unified data platform is inherently connected to the policies, procedures and business rules that inform and govern the data lifecycle. The centralized management and visibility afforded by linking policies and business rules at every level of the data lifecycle will improve data quality, reduce expensive re-work, and improve the ideation and consumption of data by the business.

Business users will know how to use (and how not to use) data, while technical practitioners will have a clear view of the controls and mechanisms required when building the infrastructure that serves up that data.

Better understand the impact of change:

Data governance should be connected to the use of data across roles, organizations, processes, capabilities, dashboards and applications. Proactive impact analysis is key to efficient and effective data strategy. However, most solutions don’t tell the whole story when it comes to data’s business impact.

By adopting a unified data platform, organizations can extend impact analysis well beyond data stores and data lineage for true visibility into who, what, where and how the impact will be felt, breaking down organizational silos.

Getting the Competitive “EDGE”

The erwin EDGE delivers an “enterprise data governance experience” in which every component of the data value chain is connected.

Now with data mapping, it unifies data preparation, enterprise modeling and data governance to simplify the entire data management and governance lifecycle.

Both IT and the business have access to an accurate, high-quality and real-time data pipeline that fuels regulatory compliance, innovation and transformation initiatives with accurate and actionable insights.