Categories
erwin Expert Blog

Constructing a Digital Transformation Strategy: Putting the Data in Digital Transformation

Having a clearly defined digital transformation strategy is an essential best practice for successful digital transformation. But what makes a digital transformation strategy viable?

Part Two of the Digital Transformation Journey …

In our last blog on driving digital transformation, we explored how business architecture and process (BP) modeling are pivotal factors in a viable digital transformation strategy.

EA and BP modeling squeeze risk out of the digital transformation process by helping organizations really understand their businesses as they are today. It gives them the ability to identify what challenges and opportunities exist, and provides a low-cost, low-risk environment to model new options and collaborate with key stakeholders to figure out what needs to change, what shouldn’t change, and what’s the most important changes are.

Once you’ve determined what part(s) of your business you’ll be innovating — the next step in a digital transformation strategy is using data to get there.

Digital Transformation Examples

Constructing a Digital Transformation Strategy: Data Enablement

Many organizations prioritize data collection as part of their digital transformation strategy. However, few organizations truly understand their data or know how to consistently maximize its value.

If your business is like most, you collect and analyze some data from a subset of sources to make product improvements, enhance customer service, reduce expenses and inform other, mostly tactical decisions.

The real question is: are you reaping all the value you can from all your data? Probably not.

Most organizations don’t use all the data they’re flooded with to reach deeper conclusions or make other strategic decisions. They don’t know exactly what data they have or even where some of it is, and they struggle to integrate known data in various formats and from numerous systems—especially if they don’t have a way to automate those processes.

How does your business become more adept at wringing all the value it can from its data?

The reality is there’s not enough time, people and money for true data management using manual processes. Therefore, an automation framework for data management has to be part of the foundations of a digital transformation strategy.

Your organization won’t be able to take complete advantage of analytics tools to become data-driven unless you establish a foundation for agile and complete data management.

You need automated data mapping and cataloging through the integration lifecycle process, inclusive of data at rest and data in motion.

An automated, metadata-driven framework for cataloging data assets and their flows across the business provides an efficient, agile and dynamic way to generate data lineage from operational source systems (databases, data models, file-based systems, unstructured files and more) across the information management architecture; construct business glossaries; assess what data aligns with specific business rules and policies; and inform how that data is transformed, integrated and federated throughout business processes—complete with full documentation.

Without this framework and the ability to automate many of its processes, business transformation will be stymied. Companies, especially large ones with thousands of systems, files and processes, will be particularly challenged by taking a manual approach. Outsourcing these data management efforts to professional services firms only delays schedules and increases costs.

With automation, data quality is systemically assured. The data pipeline is seamlessly governed and operationalized to the benefit of all stakeholders.

Constructing a Digital Transformation Strategy: Smarter Data

Ultimately, data is the foundation of the new digital business model. Companies that have the ability to harness, secure and leverage information effectively may be better equipped than others to promote digital transformation and gain a competitive advantage.

While data collection and storage continues to happen at a dramatic clip, organizations typically analyze and use less than 0.5 percent of the information they take in – that’s a huge loss of potential. Companies have to know what data they have and understand what it means in common, standardized terms so they can act on it to the benefit of the organization.

Unfortunately, organizations spend a lot more time searching for data rather than actually putting it to work. In fact, data professionals spend 80 percent of their time looking for and preparing data and only 20 percent of their time on analysis, according to IDC.

The solution is data intelligence. It improves IT and business data literacy and knowledge, supporting enterprise data governance and business enablement.

It helps solve the lack of visibility and control over “data at rest” in databases, data lakes and data warehouses and “data in motion” as it is integrated with and used by key applications.

Organizations need a real-time, accurate picture of the metadata landscape to:

  • Discover data – Identify and interrogate metadata from various data management silos.
  • Harvest data – Automate metadata collection from various data management silos and consolidate it into a single source.
  • Structure and deploy data sources – Connect physical metadata to specific data models, business terms, definitions and reusable design standards.
  • Analyze metadata – Understand how data relates to the business and what attributes it has.
  • Map data flows – Identify where to integrate data and track how it moves and transforms.
  • Govern data – Develop a governance model to manage standards, policies and best practices and associate them with physical assets.
  • Socialize data – Empower stakeholders to see data in one place and in the context of their roles.

The Right Tools

When it comes to digital transformation (like most things), organizations want to do it right. Do it faster. Do it cheaper. And do it without the risk of breaking everything. To accomplish all of this, you need the right tools.

The erwin Data Intelligence (DI) Suite is the heart of the erwin EDGE platform for creating an “enterprise data governance experience.” erwin DI combines data cataloging and data literacy capabilities to provide greater awareness of and access to available data assets, guidance on how to use them, and guardrails to ensure data policies and best practices are followed.

erwin Data Catalog automates enterprise metadata management, data mapping, reference data management, code generation, data lineage and impact analysis. It efficiently integrates and activates data in a single, unified catalog in accordance with business requirements. With it, you can:

  • Schedule ongoing scans of metadata from the widest array of data sources.
  • Keep metadata current with full versioning and change management.
  • Easily map data elements from source to target, including data in motion, and harmonize data integration across platforms.

erwin Data Literacy provides self-service, role-based, contextual data views. It also provides a business glossary for the collaborative definition of enterprise data in business terms, complete with built-in accountability and workflows. With it, you can:

  • Enable data consumers to define and discover data relevant to their roles.
  • Facilitate the understanding and use of data within a business context.
  • Ensure the organization is fluent in the language of data.

With data governance and intelligence, enterprises can discover, understand, govern and socialize mission-critical information. And because many of the associated processes can be automated, you reduce errors and reliance on technical resources while increasing the speed and quality of your data pipeline to accomplish whatever your strategic objectives are, including digital transformation.

Check out our latest whitepaper, Data Intelligence: Empowering the Citizen Analyst with Democratized Data.

Data Intelligence: Empowering the Citizen Analyst with Democratized Data

Categories
erwin Expert Blog

Data Mapping Tools: What Are the Key Differentiators

The need for data mapping tools in light of increasing volumes and varieties of data – as well as the velocity at which it must be processed – is growing.

It’s not difficult to see why either. Data mapping tools have always been a key asset for any organization looking to leverage data for insights.

Isolated units of data are essentially meaningless. By linking data and enabling its categorization in relation to other data units, data mapping provides the context vital for actionable information.

Now with the General Data Protection Regulation (GDPR) in effect, data mapping has become even more significant.

The scale of GDPR’s reach has set a new precedent and is the closest we’ve come to a global standard in terms of data regulations. The repercussions can be huge – just ask Google.

Data mapping tools are paramount in charting a path to compliance for said new, near-global standard and avoiding the hefty fines.

Because of GDPR, organizations that may not have fully leveraged data mapping for proactive data-driven initiatives (e.g., analysis) are now adopting data mapping tools with compliance in mind.

Arguably, GDPR’s implementation can be viewed as an opportunity – a catalyst for digital transformation.

Those organizations investing in data mapping tools with compliance as the main driver will definitely want to consider this opportunity and have it influence their decision as to which data mapping tool to adopt.

With that in mind, it’s important to understand the key differentiators in data mapping tools and the associated benefits.

Data Mapping Tools: erwin Mapping Manager

Data Mapping Tools: Automated or Manual?

In terms of differentiators for data mapping tools, perhaps the most distinct is automated data mapping versus data mapping via manual processes.

Data mapping tools that allow for automation mean organizations can benefit from in-depth, quality-assured data mapping, without the significant allocations of resources typically associated with such projects.

Eighty percent of data scientists’ and other data professionals’ time is spent on manual data maintenance. That’s anything and everything from addressing errors and inconsistencies and trying to understand source data or track its lineage. This doesn’t even account for the time lost due to missed errors that contribute to inherently flawed endeavors.

Automated data mapping tools render such issues and concerns void. In turn, data professionals’ time can be put to much better, proactive use, rather than them being bogged down with reactive, house-keeping tasks.

FOUR INDUSTRY FOCUSSED CASE STUDIES FOR AUTOMATED METADATA-DRIVEN AUTOMATION 
(BFSI, PHARMA, INSURANCE AND NON-PROFIT) 

 

As well as introducing greater efficiency to the data governance process, automated data mapping tools enable data to be auto-documented from XML that builds mappings for the target repository or reporting structure.

Additionally, a tool that leverages and draws from a single metadata repository means that mappings are dynamically linked with underlying metadata to render automated lineage views, including full transformation logic in real time.

Therefore, changes (e.g., in the data catalog) will be reflected across data governance domains (business process, enterprise architecture and data modeling) as and when they’re made – no more juggling and maintaining multiple, out-of-date versions.

It also enables automatic impact analysis at the table and column level – even for business/transformation rules.

For organizations looking to free themselves from the burden of juggling multiple versions, siloed business processes and a disconnect between interdepartmental collaboration, this feature is a key benefit to consider.

Data Mapping Tools: Other Differentiators

In light of the aforementioned changes to data regulations, many organizations will need to consider the extent of a data mapping tool’s data lineage capabilities.

The ability to reverse-engineer and document the business logic from your reporting structures for true source-to-report lineage is key because it makes analysis (and the trust in said analysis) easier. And should a data breach occur, affected data/persons can be more quickly identified in accordance with GDPR.

Article 33 of GDPR requires organizations to notify the appropriate supervisory authority “without undue delay and, where, feasible, not later than 72 hours” after discovering a breach.

As stated above, a data governance platform that draws from a single metadata source is even more advantageous here.

Mappings can be synchronized with metadata so that source or target metadata changes can be automatically pushed into the mappings – so your mappings stay up to date with little or no effort.

The Data Mapping Tool For Data-Driven Businesses

Nobody likes manual documentation. It’s arduous, error-prone and a waste of resources. Quite frankly, it’s dated.

Any organization looking to invest in data mapping, data preparation and/or data cataloging needs to make automation a priority.

With automated data mapping, organizations can achieve “true data intelligence,”. That being the ability to tell the story of how data enters the organization and changes throughout the entire lifecycle to the consumption/reporting layer.  If you’re working harder than your tool, you have the wrong tool.

The manual tools of old do not have auto documentation capabilities, cannot produce outbound code for multiple ETL or script types, and are a liability in terms of accuracy and GDPR.

Automated data mapping is the only path to true GDPR compliance, and erwin Mapping Manager can get you there in a matter of weeks thanks to our robust reverse-engineering technology. 

Learn more about erwin’s automation framework for data governance here.

Automate Data Mapping

Categories
erwin Expert Blog

Top 10 Data Governance Predictions for 2019

This past year witnessed a data governance awakening – or as the Wall Street Journal called it, a “global data governance reckoning.” There was tremendous data drama and resulting trauma – from Facebook to Equifax and from Yahoo to Marriott. The list goes on and on. And then, the European Union’s General Data Protection Regulation (GDPR) took effect, with many organizations scrambling to become compliant.

So what’s on the horizon for data governance in the year ahead? We’re making the following data governance predictions for 2019:

Data Governance Predictions

Top 10 Data Governance Predictions for 2019

1. GDPR-esque regulation for the United States:

GDPR has set the bar and will become the de facto standard across geographies. Look at California as an example with California Consumer Privacy Act (CCPA) going into effect in 2020. Even big technology companies like Apple, Google, Amazon and Twitter are encouraging more regulations in part because they realize that companies that don’t put data privacy at the forefront will feel the wrath from both the government and the consumer.

2. GDPR fines are coming and they will be massive:

Perhaps one of the safest data governance predictions for 2019 is the coming clamp down on GDPR enforcement. The regulations weren’t brought in for show and so it’s likely the fine-free streak for GDPR will be ending … and soon. The headlines will resemble data breaches or hospitals with Health Information Portability Privacy Act (HIPAA) violations in the U.S. healthcare sector. Lots of companies will have an “oh crap” moment and realize they have a lot more to do to get their compliance house in order.

3. Data policies as a consumer buying criteria:

The threat of “data trauma” will continue to drive visibility for enterprise data in the C-suite. How they respond will be the key to their long-term success in transforming data into a true enterprise asset. We will start to see a clear delineation between organizations that maintain a reactive and defensive stance (pain avoidance) versus those that leverage this negative driver as an impetus to increase overall data visibility and fluency across the enterprise with a focus on opportunity enablement. The latter will drive the emergence of true data-driven entities versus those that continue to try to plug the holes in the boat.

4. CDOs will rise, better defined role within the organization:

We will see the chief data officer (CDO) role elevated from being a lieutenant of the CIO to taking a proper seat at the table beside the CIO, CMO and CFO.  This will give them the juice needed to create a sustainable vision and roadmap for data. So far, there’s been a profound lack of consensus on the nature of the role and responsibilities, mandate and background that qualifies a CDO. As data becomes increasingly more vital to an organization’s success from a compliance and business perspective, the role of the CDO will become more defined.

5. Data operations (DataOps) gains traction/will be fully optimized:

Much like how DevOps has taken hold over the past decade, 2019 will see a similar push for DataOps. Data is no longer just an IT issue. As organizations become data-driven and awash in an overwhelming amount of data from multiple data sources (AI, IOT, ML, etc.), organizations will need to get a better handle on data quality and focus on data management processes and practices. DataOps will enable organizations to better democratize their data and ensure that all business stakeholders work together to deliver quality, data-driven insights.

Data Management and Data Governance

6. Business process will move from back office to center stage:

Business process management will make its way out of the back office and emerge as a key component to digital transformation. The ability for an organization to model, build and test automated business processes is a gamechanger. Enterprises can clearly define, map and analyze workflows and build models to drive process improvement as well as identify business practices susceptible to the greatest security, compliance or other risks and where controls are most needed to mitigate exposures.

7. Turning bad AI/ML data good:

Artificial Intelligence (AI) and Machine Learning (ML) are consumers of data. The risk of training AI and ML applications with bad data will initially drive the need for data governance to properly govern the training data sets. Once trained, the data they produce should be well defined, consistent and of high quality. The data needs to be continuously governed for assurance purposes.

8. Managing data from going over the edge:

Edge computing will continue to take hold. And while speed of data is driving its adoption, organizations will also need to view, manage and secure this data and bring it into an automated pipeline. The internet of things (IoT) is all about new data sources (device data) that often have opaque data structures. This data is often integrated and aggregated with other enterprise data sources and needs to be governed like any other data. The challenge is documenting all the different device management information bases (MIBS) and mapping them into the data lake or integration hub.

9. Organizations that don’t have good data harvesting are doomed to fail:

Research shows that data scientists and analysts spend 80 percent of their time preparing data for use and only 20 percent of their time actually analyzing it for business value. Without automated data harvesting and ingesting data from all enterprise sources (not just those that are convenient to access), data moving through the pipeline won’t be the highest quality and the “freshest” it can be. The result will be faulty intelligence driving potentially disastrous decisions for the business.

10. Data governance evolves to data intelligence:

Regulations like GDPR are driving most large enterprises to address their data challenges. But data governance is more than compliance. “Best-in-breed” enterprises are looking at how their data can be used as a competitive advantage. These organizations are evolving their data governance practices to data intelligence – connecting all of the pieces of their data management and data governance lifecycles to create actionable insights. Data intelligence can help improve the customer experiences and enable innovation of products and services.

The erwin Expert Blog will continue to follow data governance trends and provide best practice advice in the New Year so you can see how our data governance predictions pan out for yourself. To stay up to date, click here to subscribe.

Data Management and Data Governance: Solving the Enterprise Data Dilemma

Categories
erwin Expert Blog

Data Modeling and Data Mapping: Results from Any Data Anywhere

A unified approach to data modeling and data mapping could be the breakthrough that many data-driven organizations need.

In most of the conversations I have with clients, they express the need for a viable solution to model their data, as well as the ability to capture and document the metadata within their environments.

Data modeling is an integral part of any data management initiative. Organizations use data models to tame “data at rest” for business use, governance and technical management of databases of all types.

However, once an organization understands what data it has and how it’s structured via data models, it needs answers to other critical questions: Where did it come from? Did it change along the journey? Where does it go from here?

Data Mapping: Taming “Data in Motion”

Knowing how data moves throughout technical and business data architectures is key for true visibility, context and control of all data assets.

Managing data in motion has been a difficult, time-consuming task that involves mapping source elements to the data model, defining the required transformations, and/or providing the same for downstream targets.

Historically, it either has been outsourced to ETL/ELT developers who often create a siloed, technical infrastructure opaque to the business, or business-friendly mappings have been kept in an assortment of unwieldy spreadsheets difficult to consolidate and reuse much less capable of accommodating new requirements.

What if you could combine data at rest and data in motion to create an efficient, accurate and real-time data pipeline that also includes lineage? Then you can spend your time finding the data you need and using it to produce meaningful business outcomes.

Good news … you can.

erwin Mapping Manager: Connected Data Platform

Automated Data Mapping

Your data modelers can continue to use erwin Data Modeler (DM) as the foundation of your database management system, documenting, enforcing and improving those standards. But instead of relying on data models to disseminate metadata information, you can scan and integrate any data source and present it to all interested parties – automatically.

erwin Mapping Manager (MM) shifts the management of metadata away from data models to a dedicated, automated platform. It can collect metadata from any source, including JSON documents, erwin data models, databases and ERP systems, out of the box.

This functionality underscores our Any2 data approach by collecting any data from anywhere. And erwin MM can schedule data collection and create versions for comparison to clearly identify any changes.

Metadata definitions can be enhanced using extended data properties, and detailed data lineages can be created based on collected metadata. End users can quickly search for information and see specific data in the context of business processes.

To summarize the key features current data modeling customers seem to be most excited about:

  • Easy import of legacy mappings, plus share and reuse mappings and transformations
  • Metadata catalog to automatically harvest any data from anywhere
  • Comprehensive upstream and downstream data lineage
  • Versioning with comparison features
  • Impact analysis

And all of these features support and can be integrated with erwin Data Governance. The end result is knowing what data you have and where it is so you can fuel a fast, high-quality and complete pipeline of any data from anywhere to accomplish your organizational objectives.

Want to learn more about a unified approach to data modeling and data mapping? Join us for our weekly demo to see erwin MM in action for yourself.

erwin Mapping Manager

Categories
erwin Expert Blog Data Governance Data Intelligence

Demystifying Data Lineage: Tracking Your Data’s DNA

Getting the most out of your data requires getting a handle on data lineage. That’s knowing what data you have, where it is, and where it came from – plus understanding its quality and value to the organization.

But you can’t understand your data in a business context much less track data lineage, its physical existence and maximize its security, quality and value if it’s scattered across different silos in numerous applications.

Data lineage provides a way of tracking data from its origin to destination across its lifespan and all the processes it’s involved in. It also plays a vital role in data governance. Beyond the simple ability to know where the data came from and whether or not it can be trusted, there’s an element of statutory reporting and compliance that often requires a knowledge of how that same data (known or unknown, governed or not) has changed over time.

A platform that provides insights like data lineage, impact analysis, full-history capture, and other data management features serves as a central hub from which everything can be learned and discovered about the data – whether a data lake, a data vault or a traditional data warehouse.

In a traditional data management organization, Excel spreadsheets are used to manage the incoming data design, what’s known as the “pre-ETL” mapping documentation, but this does not provide any sort of visibility or auditability. In fact, each unit of work represented in these ‘mapping documents’ becomes an independent variable in the overall system development lifecycle, and therefore nearly impossible to learn from much less standardize.

The key to accuracy and integrity in any exercise is to eliminate the opportunity for human error – which does not mean eliminating humans from the process but incorporating the right tools to reduce the likelihood of error as the human beings apply their thought processes to the work.

Data Lineage

Data Lineage: A Crucial First Step for Data Governance

Knowing what data you have and where it lives and where it came from is complicated. The lack of visibility and control around “data at rest” combined with “data in motion,” as well as difficulties with legacy architectures, means organizations spend more time finding the data they need rather than using it to produce meaningful business outcomes.

Organizations need to create and sustain an enterprise-wide view of and easy access to underlying metadata, but that’s a tall order with numerous data types and data sources that were never designed to work together and data infrastructures that have been cobbled together over time with disparate technologies, poor documentation and little thought for downstream integration. So the applications and initiatives that depend on a solid data infrastructure may be compromised, resulting in faulty analyses.

These issues can be addressed with a strong data management strategy underpinned by technology that enables the data quality the business requires, which encompasses data cataloging (integration of data sets from various sources), mapping, versioning, business rules and glossaries maintenance and metadata management (associations and lineage).

An automated, metadata-driven framework for cataloging data assets and their flows across the business provides an efficient, agile and dynamic way to generate data lineage from operational source systems (databases, data models, file-based systems, unstructured files and more) across the information management architecture; construct business glossaries; assess what data aligns with specific business rules and policies; and inform how that data is transformed, integrated and federated throughout business processes – complete with full documentation.

Centralized design, immediate lineage and impact analysis, and change-activity logging means you will always have answers readily available, or just a few clicks away. Subsets of data can be identified and generated via predefined templates, generic designs generated from standard mapping documents, and pushed via ETL process for faster processing via automation templates.

With automation, data quality is systemically assured and the data pipeline is seamlessly governed and operationalized to the benefit of all stakeholders. Without such automation, business transformation will be stymied. Companies, especially large ones with thousands of systems, files and processes, will be particularly challenged by a manual approach. And outsourcing these data management efforts to professional services firms only increases costs and schedule delays.

With erwin Mapping Manager, organizations can automate enterprise data mapping and code generation for faster time-to-value and greater accuracy when it comes to data movement projects, as well as synchronize “data in motion” with data management and governance efforts.

Map data elements to their sources within a single repository to determine data lineage, deploy data warehouses and other Big Data solutions, and harmonize data integration across platforms. The web-based solution reduces the need for specialized, technical resources with knowledge of ETL and database procedural code, while making it easy for business analysts, data architects, ETL developers, testers and project managers to collaborate for faster decision-making.

Data Lineage