Categories
erwin Expert Blog

Data Modeling and Data Mapping: Results from Any Data Anywhere

A unified approach to data modeling and data mapping could be the breakthrough that many data-driven organizations need.

In most of the conversations I have with clients, they express the need for a viable solution to model their data, as well as the ability to capture and document the metadata within their environments.

Data modeling is an integral part of any data management initiative. Organizations use data models to tame “data at rest” for business use, governance and technical management of databases of all types.

However, once an organization understands what data it has and how it’s structured via data models, it needs answers to other critical questions: Where did it come from? Did it change along the journey? Where does it go from here?

Data Mapping: Taming “Data in Motion”

Knowing how data moves throughout technical and business data architectures is key for true visibility, context and control of all data assets.

Managing data in motion has been a difficult, time-consuming task that involves mapping source elements to the data model, defining the required transformations, and/or providing the same for downstream targets.

Historically, it either has been outsourced to ETL/ELT developers who often create a siloed, technical infrastructure opaque to the business, or business-friendly mappings have been kept in an assortment of unwieldy spreadsheets difficult to consolidate and reuse much less capable of accommodating new requirements.

What if you could combine data at rest and data in motion to create an efficient, accurate and real-time data pipeline that also includes lineage? Then you can spend your time finding the data you need and using it to produce meaningful business outcomes.

Good news … you can.

erwin Mapping Manager: Connected Data Platform

Automated Data Mapping

Your data modelers can continue to use erwin Data Modeler (DM) as the foundation of your database management system, documenting, enforcing and improving those standards. But instead of relying on data models to disseminate metadata information, you can scan and integrate any data source and present it to all interested parties – automatically.

erwin Mapping Manager (MM) shifts the management of metadata away from data models to a dedicated, automated platform. It can collect metadata from any source, including JSON documents, erwin data models, databases and ERP systems, out of the box.

This functionality underscores our Any2 data approach by collecting any data from anywhere. And erwin MM can schedule data collection and create versions for comparison to clearly identify any changes.

Metadata definitions can be enhanced using extended data properties, and detailed data lineages can be created based on collected metadata. End users can quickly search for information and see specific data in the context of business processes.

To summarize the key features current data modeling customers seem to be most excited about:

  • Easy import of legacy mappings, plus share and reuse mappings and transformations
  • Metadata catalog to automatically harvest any data from anywhere
  • Comprehensive upstream and downstream data lineage
  • Versioning with comparison features
  • Impact analysis

And all of these features support and can be integrated with erwin Data Governance. The end result is knowing what data you have and where it is so you can fuel a fast, high-quality and complete pipeline of any data from anywhere to accomplish your organizational objectives.

Want to learn more about a unified approach to data modeling and data mapping? Join us for our weekly demo to see erwin MM in action for yourself.

erwin Mapping Manager

Categories
erwin Expert Blog

Data-Driven Business – Changing Perspective

Data-driven business is booming. The dominant, driving force in business has arguably become a driving force in our daily lives for consumers and corporations alike.

We now live in an age in which data is a more valuable resource than oil, and five of the world’s most valuable companies – Alphabet/Google, Amazon, Apple, Facebook and Microsoft – all deal in data.

However, just acknowledging data’s value won’t do. For a business to truly benefit from its information, a change in perspective is also required. With an additional $65 million in net income available to Fortune 1000 companies that make use of just 10 percent more of their data, the stakes are too high to ignore.

Changing Perspective

Traditionally, data management only concerned data professionals. However, mass digital transformation, with data as the foundation, puts this traditional approach at odds with current market needs. Siloing data with data professionals undermines the opportunity to apply data to improve overall business performance.

The precedent is there. Some of the most disruptive businesses of the last decade have doubled down on the data-driven approach, reaping huge rewards for it.

Airbnb, Netflix and Uber have used data to transform everything, including how they make decisions, invent new products or services, and improve processes to add to both their top and bottom lines. And they have shaken their respective markets to their cores.

Even with very different offerings, all three of these businesses identify under the technology banner – that’s telling.

Common Goals

One key reason for the success of data-driven business, is the alignment of common C-suite goals with the outcomes of a data initiative.

Those goals being:

  • Identifying opportunities and risk
  • Strengthening marketing and sales
  • Improving operational and financial performance
  • Managing risk and compliance
  • Producing new products and services, or improve existing ones
  • Monetizing data
  • Satisfying customers

This list of C-suite goals is, in essence, identical to the business outcomes of a data-driven business strategy.

What Your Data Strategy Needs

In the early stages of data transformation, businesses tend to take an ad-hoc approach to data management. Although that might be viable in the beginning, a holistic data-driven strategy requires more than makeshift efforts, and repurposed Office tools .

Organizations that truly embrace data, becoming fundamentally data-driven businesses, will have to manage data from numerous and disparate sources (variety) in increasingly large quantities (volume) and at demandingly high speeds (velocity).

To manage these three Vs of data effectively, your business needs to take an “any-squared” (Any2) approach. That’s “any data” from “anywhere.”

Any2

By leveraging a data management platform with data modeling, enterprise architecture and business process modelling, you can ensure your organization is prepared to undergo a successful digital transformation.

Data modeling identifies what data you have (internal and external), enterprise architecture determines how best to use that data to drive value, and business process modeling provides understanding in how the data should be used to drive business strategy and objectives.

Therefore, the application of the above disciplines and associated tools goes a long way in achieving the common goals of C-suite executives.

For more data advice and best practices, follow us on Twitter, and LinkedIn to stay up to date with the blog.

For a deeper dive into best practices for data, its benefits, and its applications, get the FREE whitepaper below.

Data-Driven Business Transformation