

Data Modeling Overview Guide
Release 9.64.01

CA ERwin® Data Modeler

This Documentation, which includes embedded help systems and electronically distributed materials (hereinafter referred to as
the “Documentation”), is for your informational purposes only and is subject to change or withdrawal by CA at any time. This
Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior wri tten consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection wi th
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
l i cense for such software remains in full force and effect. Should the license terminate for any reason, i t is your responsibility to
certi fy in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,

DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such

l icense agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restricti ons
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2016 CA. Al l rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

CA Technologies Product References

This document references the following CA Technologies products:

■ CA ERwin® Data Modeler (CA ERwin DM)

Contact CA Technologies

Understanding your Support

Review support maintenance programs and offerings .

Registering for Support

Access the CA Support online registration site to register for product support.

Accessing Technical Support

For your convenience, CA Technologies provides easy access to "One Stop" support for
all editions of CA ERwin Data Modeler, and includes the following:

■ Online and telephone contact information for technical assistance and customer

services

■ Information about user communities and forums

■ Product and documentation downloads

■ CA Support policies and guidelines

■ Other helpful resources appropriate for your product

For information about other Home Office, Small Business, and Enterprise CA
Technologies products, visit http://ca.com/support.

Provide Feedback

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

If you would like to provide feedback about CA Technologies product documentation,
complete our short customer survey, which is also available on the CA Support website,
found at http://ca.com/docs.

CA ERwin Data Modeler News and Events

Visit www.erwin.com to get up-to-date news, announcements, and events. View video
demos and read up on customer success stories and articles by industry experts.

https://support.ca.com/prodinfo/dmsupportofferings
https://support.ca.com/prodinfo/supportregistration
https://support.ca.com/prodinfo/erwin
http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs
http://www.erwin.com/
http://www.erwin.com/

Contents 5

Contents

Chapter 1: Introduction 9

Benefits of Data Modeling .. 9

Methods... 10

Typographical Conventions .. 10

Chapter 2: Information Systems, Databases, and Models 11

Data Modeling .. 11

Data Modeling Sessions .. 12

Session Roles... 13

Sample IDEF1X Modeling Methodology... 14

Modeling Architecture .. 15

Logical Models .. 16

Entity Relationship Diagram ... 16
Key-Based Model.. 16

Fully-Attributed Model.. 16

Physical Models .. 17

Transformation Model .. 17

DBMS Model ... 18

Chapter 3: Logical Models 19

Constructing a Logical Model ... 19

Entity Relationship Diagram ... 20

Entities and Attributes Defined ... 21

Logical Relationships ... 22

Many-to-Many Relationships... 23

Logical Model Design Validation ... 24

Data Model Example ... 25

Chapter 4: The Key-Based Data Model 27

Key Types ... 28

Entity and Non-Key Areas ... 28
Primary Key Selection.. 28

Alternate Key Attributes ... 30

Inversion Entry Attributes... 31

Relationships and Foreign Key Attributes .. 31

6 Data Modeling Overview Guide

Dependent and Independent Entities .. 32

Identifying Relationships... 33

Nonidentifying Relationships ... 34

Rolenames ... 35

Chapter 5: Naming and Defining Entities and Attributes 37

Entity and Attribute Names.. 37

Synonyms, Homonyms, and Aliases ... 38

Entity Definitions .. 39

Descriptions... 39

Definition References and Circularity... 40

Business Glossary Construction ... 41
Attribute Definitions .. 41

Validation Rules .. 42

Rolenames ... 43

Definitions and Business Rules .. 44

Chapter 6: Relationships 45

Relationship Cardinality .. 45

Cardinality in Nonidentifying Relationships .. 47

Referential Integrity... 49

Referential Integrity Options ... 51

RI, Cardinality, and Identifying Relationships.. 53

RI, Cardinality, and Non-Identifying Relationships... 54

Additional Relationship Types.. 55

Many-to-Many Relationships... 55

N-ary Relationships .. 57

Recursive Relationships .. 59

Subtype Relationships ... 61

Complete Compared to Incomplete Subtype Structures .. 63
Inclusive and Exclusive Relationships ... 64

IDEF1X and IE Subtype Notation ... 65

When to Create a Subtype Relationship .. 66

Chapter 7: Normalization Problems and Solutions 67

Normalization ... 67

Overview of the Normal Forms ... 68

Common Design Problems ... 69

Repeating Data Groups ... 69

Multiple Use of the Same Attribute.. 71

Contents 7

Multiple Occurrences of the Same Fact ... 73

Conflicting Facts ... 74

Derived Attributes.. 76

Missing Information... 77

Unification ... 79

How Much Normalization Is Enough .. 80

Support for Normalization.. 82

First Normal Form Support... 82

Second and Third Normal Form Support ... 83

Chapter 8: Physical Models 85

Objective.. 85
Support for the Roles of the Physical Model... 86

Summary of Logical and Physical Model Components .. 86

Denormalization ... 87

Appendix A: Dependent Entity Types 89

Classification of Dependent Entities ... 89

Glossary 91

Index 95

Chapter 1: Introduction 9

Chapter 1: Introduction

While data modeling can be complex, this Overview Guide can help Data Architects
understand data modeling and its uses.

Overall, this guide has the following purposes:

■ Provide a basic level of understanding of the data modeling method used by CA

ERwin DM that is sufficient to do real database design.

■ Introduce some of the descriptive power and richness of the IDEF1X and IE
modeling languages supported, and to provide a foundation for future learning.

■ Provide information about the supported features of IDEF1X and IE in CA ERwin
DM, and the mapping between these methods.

This section contains the following topics:

Benefits of Data Modeling (see page 9)

Methods (see page 10)
Typographical Conventions (see page 10)

Benefits of Data Modeling

Regardless of the DBMS you use or the types of data models you want to develop,

modeling your database in CA ERwin DM has many benefits:

■ Enables usage by database and application development staff to define system
requirements and to communicate among themselves and with end users.

■ Provides a clear picture of referential integrity constraints. Maintaining referential

integrity is essential in the relational model where relationships are encoded
implicitly.

■ Provides a logical RDBMS-independent picture of your database that automated

tools can use to generate RDBMS-specific information. This way, you can use a
single diagram to generate DB2 table schemas, and schemas for other relational
DBMSs.

■ Lets you produce a diagram summarizing the results of your data modeling efforts

and generate a database schema from that model.

Methods

10 Data Modeling Overview Guide

Methods

CA ERwin DM supports two methods of data modeling:

IDEF1X

The United States Air Force developed the IDEF1X method. The IDEF1X method is
now used in various governmental agencies, in the aerospace and financial industry,

and in a wide variety of major corporations.

IE (Information Engineering)

James Martin, Clive Finkelstein, and other IE authorities developed the IE method,
which is widely deployed in various industries.

Both methods are suited to environments where large-scale, rigorous, enterprise-wide
data modeling is essential.

Typographical Conventions

The following table describes the typographical conventions used in this guide to

identify key terms:

Text Item Convention Example

Entity Name All uppercase, followed by the word

"entity" in lowercase

MOVIE COPY entity

Attribute Name All lowercase in quotation marks "movie name"

Column Name All lowercase movie_name

Table Name All uppercase MOVIE_COPY

Verb Phrase All lowercase in angle brackets <is available for rental as>

Chapter 2: Information Systems, Databases, and Models 11

Chapter 2: Information Systems,
Databases, and Models

This section contains the following topics:

Data Modeling (see page 11)
Data Modeling Sessions (see page 12)

Sample IDEF1X Modeling Methodology (see page 14)
Modeling Architecture (see page 15)
Logical Models (see page 16)
Physical Models (see page 17)

Data Modeling
Data modeling

Data modeling is the process of describing information structures and capturing
business rules to specify information system requirements. Data models represent

a balance between the specific needs of an RDBMS implementation project, and the
general needs of the business area that requires it.

When created with the full participation of business and systems professionals, the data
model can provide many benefits. These benefits generally fall into the following two

classes:

Effort

The staff associated with the process of creating the model.

Product of the Effort

The staff primarily associated with the model.

Examples of Product Benefits

■ A data model is independent of implementation, so it does not require that the
implementation is in any particular database or programming language.

■ A data model is an unambiguous specification of what is wanted.

■ The model is business user-driven. The business client controls the content and
structure of the model, rather than the system developer. The emphasis is on
requirements rather than constraints or solutions.

■ The terms used in the model are stated in the language of the business, not that of
the system development organization.

■ The model provides a context to focus your discussions about what is important to

the business.

Data Modeling Sessions

12 Data Modeling Overview Guide

Examples of Process Benefits

■ During early project phases, model development sessions bring together individuals

from many parts of the business. The sessions provide a structured forum where
business needs and policies are discussed. Business staff typica lly meets others for
the first time, and meets others in different parts of the organization who are

concerned with the same needs.

■ Sessions lead to development of a common business language with consistent and
precise definitions of terms used. Communication among participants is greatly
increased.

■ Early phase sessions provide a mechanism for exchanging large amounts of
information among business participants and transferring much business
knowledge to the system developers. Later phase sessions continue that transfer of
knowledge to the staff who will implement the solution.

■ Session participants are better able to see how their activities fit into a larger

context. Also, parts of the project can be seen in the context of the whole. The
emphasis is on cooperation rather than separation. Over time, cooperation leads to
a shift in values, and the reinforcement of a cooperative philosophy.

■ Sessions foster consensus and build teams.

Design of the data structures to support a business area is only one part of developing a
system. Function modeling, the analysis of processes (function) is equally important.
Function models describe how something is done. They can be presented as hierarc hical

decomposition charts, data flow diagrams, HIPO diagrams, and so on. Developing both
your function models and data models at the same time is important. Discussion of the
functions that the system performs uncovers the data requirements. Discussion of the
data typically uncovers additional function requirements. Function and data are the two

sides of the system development coin.

Data Modeling Sessions

Creating a data model involves not only model construction, but also many fact-finding
sessions (meetings) to uncover the data and processes used by a business. Running

good sessions, l ike running good meetings of any kind, depends on preparation and
real-time facil itation techniques. In general, include the right mix of business and
technical experts, and facil itate the modeling sessions. Schedule modeling sessions in
advance, carefully plan to cover sets of focused material, and orchestrate it in a way to

achieve the results you require.

When possible, it is highly recommended that modeling of function and data be done at
the same time. Functional models tend to validate a data model and uncover new data
requirements, and helps ensure that the data model supports function requirements.

Data Modeling Sessions

Chapter 2: Information Systems, Databases, and Models 13

Session Roles

Formal, guided sessions, with defined roles for participants and agreed upon procedures
and rules, are an absolute requirement. The following roles work well:

Facilitator

A facil itator acts as the session guide and is responsible for:

– Arranging the meetings and facil ities

– Providing follow-up documentation

– Intervening during sessions, as necessary, to keep sessions on track and to

control the scope of the session.

Data Architect

Leads the group through the process of developing and validating the model. A data
architect develops the model, in real time if possible, in front of the group. The data

architect asks pertinent questions that bring out the important details and records
the resulting structure for all to see. The same individual can fi ll both facil itator and
data architect roles, although it can be difficult.

Data Analyst

Acts as the scribe for the session and records the definitions of all the entities and
attributes that make up the model. Using the information from the business
experts, the data analyst can also begin to package entities and attributes into

subject areas. Subject areas are simply manageable and meaningful subsets of the
complete data model.

Subject Matter Expert

Provides the business information necessary to construct the model. You can have
more than one subject matter expert. They are business experts, not systems
experts.

Manager

Participates in the sessions in an assigned role (such as facilitator or subject matter
expert) and keeps the process moving. The manager has the responsibility of
“breaking ties” but only when necessary. The manager can be from either the

systems or business community.

Sample IDEF1X Modeling Methodology

14 Data Modeling Overview Guide

Sample IDEF1X Modeling Methodology

CA ERwin DM was developed to support the IDEF1X and IE modeling standards. The use
of various levels of models within the IDEF1X method can be helpful in developing a
system. General model levels are outlined in the IDEF1X standard. In practice, you can
expand or contract the number of levels to fit individua l situations.

Model levels generally span from a wide view to a narrow view, depending on project
requirements. A wide but not too detailed view can include only the major entities that
are important to a business. A narrow view can include a level of prec ision required to
represent the database design in terms understandable by a particular DBMS. At the

lowest level of detail, models are technology-dependent. For example, a model for an
IMS database looks different from a model for a DB2 database. At higher levels, models
are technology independent and can represent information that is not stored in any

automated system.

The modeling levels presented are suited to a top-down system development l ifecycle
approach, where successive levels of detail are created during each project phase.

The highest level models come in two forms:

Entity Relationship Diagram (ERD)

Identifies major business entities and their relationships.

Key-Based (KB)

Sets the scope of the business information requirement (all entities are included)
and begins to expose the detail.

The lower-level models also come in two forms:

Fully-Attributed (FA)

Represents a third normal form model that contains all of the detail for a particular

implementation effort.

Transformation Model (TM)

Represents a transformation of the relational model into a structure, which is
appropriate to the DBMS chosen for implementation. The TM, in most cases, is no

longer in third normal form. The structures are optimized based on the capabilities
of the DBMS, the data volumes, and the expected access patterns and rates against
the data. In a way, a TM is a picture of the eventual physical database design.

DBMS Model

The database design is contained in the DBMS Model for the system. The DBMS
Model can be a project level model or an area level model for the entire integrated
system.

Modeling Architecture

Chapter 2: Information Systems, Databases, and Models 15

Modeling Architecture

Five modeling levels are presented in the following il lustration. Notice tha t the DBMS
model can be at either an Area Level scope, or a Project Level scope. It is not uncommon
to have single ERD and KB models for a business, and multiple DBMS models. You can
have one DBMS model for each implementation environment, and another set within

that environment for projects that do not share databases. In an ideal situation, there is
a set of Area Level scope DBMS models. One Area Level scope DBMS model for each
environment, with complete data sharing across all projects in that environment.

The models fall into two categories:

■ Logical

■ Physical

Logical Models

16 Data Modeling Overview Guide

Logical Models

There are three levels of logical models that are used to capture business information
requirements:

■ Entity Relationship diagram

■ Key-Based model

■ Fully-Attributed model

The Entity Relationship diagram and the Key-Based models are also known as area data
models. They often cover a wide business area that is larger than the business chooses
to address with a single automation project. In contrast, the Fully-Attributed model is a

project data model. Typically it describes a portion of an overall data structure intended
for support by a single automation effort.

Entity Relationship Diagram

The Entity Relationship diagram (ERD) is a high-level data model that shows the major

entities and relationships, which support a wide business area. An ERD is primarily a
presentation or discussion model.

The ERD objective is to provide a view of business information requirements to satisfy

the need for broad planning for development of its information system. These models
are not detailed (only major entities are included), and not much detail, if any, on
attributes. Many-to-many (nonspecific) relationships are allowed, and keys are general ly
not included.

Key-Based Model

A key-based (KB) model describes the major data structures, which support a wide
business area. All entities and primary keys are included with sample attributes.

The objective of the KB model is to provide a broad business view of data structures and

keys required to support the area. A KB model provides a context where detailed
implementation level models can be constructed. The model covers the same scope as
the Area ERD, but exposes more of the detail.

Fully-Attributed Model

A fully-attributed (FA) model is a third normal form data model that includes all entities,
attributes, and relationships required by a single project. The model includes entity
instance volumes, access paths and rates, and expected transaction access patterns

across the data structure.

Physical Models

Chapter 2: Information Systems, Databases, and Models 17

Physical Models

Two levels of physical models exist for an implementation project:

■ Transformation model

■ DBMS model

The physical models capture all of the informati on that data architects and database

administrators require to implement a logical model as a database system. The
Transformation model is also a project data model that describes a portion of an overall
data structure supported by a single automation effort. Individual projects within a
business area are supported, allowing the modeler to separate a larger area model into

submodels, or subject areas. Subject areas can be developed, reported on, and
generated to the database in isolation from the area model and other subject areas in
the model.

Transformation Model

The objectives of the Transformation model include:

■ Provide the database administrator with sufficient information to create a n efficient
physical database

■ Provide a context for the definition and recording of the data elements

■ Hold the records that form the database in the data dictionary

■ Help the application team select a physical structure for the programs that will
access the data.

During the development effort, the model can also provide the basis for comparing the
physical database design against the original business information requirements to:

■ Demonstrate that the physical database design adequately supports those

requirements.

■ Document physical design choices and their implications, such as what is satisfied,
and what is not.

■ Identify database extensibil ity capabilities and constraints.

Physical Models

18 Data Modeling Overview Guide

DBMS Model

The Transformation model directl y translates into a DBMS model, which captures the
physical database object definitions in the RDBMS schema or database catalog. The
schema generation function directly supports this model. Primary keys become unique

indexes. Alternate keys and inversion entries can also become indexes. Cardinality can
be enforced either through the referential integrity capabilities of the DBMS, application
logic, or “after the fact” detection and repair of violations.

Chapter 3: Logical Models 19

Chapter 3: Logical Models

This section contains the following topics:

Constructing a Logical Model (see page 19)
Entity Relationship Diagram (see page 20)
Logical Model Design Validation (see page 24)

Data Model Example (see page 25)

Constructing a Logical Model

The first step in constructing a logical model is developing the Entity Relationship
diagram (ERD), a high-level data model of a wide business area. An ERD is made up of

three main building blocks: entities, attributes, and relationships. A diagram can be
viewed as a graphical language for expressing statements about your business. Entities
are the nouns, attributes are the adjecti ves or modifiers, and relationships are the
verbs. Building a data model is simply a matter of putting together the right collection of

nouns, verbs, and adjectives.

The objective of the ERD is to provide a broad view of business information
requirements sufficient to plan for development of the business information system.

ERD models are not detailed (only major entities are included) and there is not much
detail, if any, about attributes. Many-to-many (nonspecific) relationships are allowed
and keys are generally not included. An ERD model is primarily a presentation or
discussion model.

An ERD can be divided into subject areas, which are used to define business views or

specific areas of interest to individual business functions. Subject areas help reduce
larger models into smaller, more manageable subsets of entities that can be more easily
defined and maintained.

Many methods are available for developing the ERD. These range from formal modeling

sessions to individual interviews with business managers who have responsibility for
wide areas.

Entity Relationship Diagram

20 Data Modeling Overview Guide

Entity Relationship Diagram

If you are familiar with a relational database structure, you know that the most
fundamental component of a relational database is the table. Tables are used to
organize and store information. A table is organized in columns and rows of data. Each
row contains a set of facts, which is an instance of the table.

In a relational database, all data values must also be atomic, which means that each cell
in the table can contain only a single fact. A relationship also exists between the tables
in the database. Each relationship is represented in an RDBMS by sharing one or more
columns in two tables.

Like the tables and columns that comprise a physical model of a relational database, an

ERD (and all other logical data models) includes equivalent components. The
components let you model the data structures of the business, rather than the databa se
management system. The logical equivalent to a table is an entity, and the logical

equivalent to a column is an attribute.

In an ERD, a box represents an entity, which contains the name of the entity. Entity
names are always singular: CUSTOMER not CUSTOMERS, MOVIE not MOVIES, COUNTRY
not COUNTRIES. By using singular nouns, you benefit from a consistent naming standard

and facil itate reading the diagram as a set of declarative statements about entity
instances.

The following il lustration depicts a hypothetical video store. The video store must track
its customers, movies that can be rented or purchased, and rental copies of movies in
the store.

In an ERD, a l ine drawn between the entities in the model represents a relationship. A

relationship between two entities also implies that facts in one entity refer to, or are
associated with, facts in another entity. In the preceding example, the video store must
track information about CUSTOMERs and MOVIE RENTAL COPYs. The information in
these two entities is related, and this relationship can be expressed in a statement: A

CUSTOMER rents one or more MOVIE RENTAL COPYs.

Entity Relationship Diagram

Chapter 3: Logical Models 21

Entities and Attributes Defined

An entity is any person, place, thing, event, or concept about which information is kept.
More precisely, an entity is a set or collection of l ike individual objects known as
instances. An instance (row) is a single occurrence of a given entity. Each instance must

have an identity distinct from all other instances.

In the preceding il lustration, the CUSTOMER entity represents the set of all the possible

customers of a business. Each instance of the CUSTOMER entity is a customer. You can
list information for an entity in a sample instance table, such as is shown in the following
il lustration:

CUSTOMER

customer id customer name customer address

10001 Ed Green Princeton, NJ

10011 Margaret Henley New Brunswick, NJ

10012 Tomas Perez Berkeley, CA

17886 Jonathon Walters New York, NY

10034 Greg Smith Princeton, NJ

Each instance represents a set of facts about the related entity. In the preceding table,
each instance of the CUSTOMER entity includes information about the “customer id,”
“customer name,” and “customer address.” In a logical model, these properties are

known as the attributes of an entity. Each attribute captures a single piece of
information about the entity.

Entity Relationship Diagram

22 Data Modeling Overview Guide

You can include attributes in an ERD to describe the entities in the model more fully, as
shown in the following il lustration:

Logical Relationships

Relationships represent connections, l inks, or associations between entities. They are
the verbs of a diagram that show how entities relate to each other. Easy to understand
rules help business professionals validate data constraints and ultimately identify

relationship cardinality.

Examples of one-to-many relationships:

■ A TEAM <has> many PLAYERs

■ A PLANE FLIGHT <transports> many PASSENGERs

■ A DOUBLES TENNIS MATCH <requires> exactly 4 PLAYERs

■ A HOUSE <is owned by> one or more OWNERs

■ A SALESPERSON <sells> many PRODUCTs

Entity Relationship Diagram

Chapter 3: Logical Models 23

In all of these cases, the relationships are chosen so that the connection between the
two entities is what is known as one-to-many. A one-to-many means that one (and only

one instance) of the first entity is related or connected to many instances of the second
entity. The entity on the one-end is known as the parent entity. The entity on the
many-end is known as the child entity.

Relationships are displayed as a l ine connecting two entities, with a dot on one end, and
a verb phrase written along the line. In the previous examples, the verb phrases are the
words inside the brackets, such as <sells>. The following figure shows the relationship
between PLANE FLIGHTs and PASSENGERs on that fl ight:

Many-to-Many Relationships

A many-to-many relationship is also known as a nonspecific relationship. A
many-to-many relationship represents a situation where an instance in one entity
relates to one or more instances in a second entity, and an instance in the second entity

also relates to one or more instances in the first entity. In the video store example, a
many-to-many relationship occurs between a CUSTOMER and a MOVIE COPY. From a
conceptual point of view, this many-to-many relationship indicates that:

■ A CUSTOMER <rents> many MOVIE COPYs

■ A MOVIE COPY <is rented by> many CUSTOMERs

You typically use many-to-many relationships in a preliminary stage of diagram
development, such as in an ERD. Many-to-many relationships are represented in IDEF1X

as a solid l ine with dots on both ends.

Logical Model Design Validation

24 Data Modeling Overview Guide

Because a many-to-many relationship can hide other business rules or constraints, it is
better to explore them later in the modeling process. For example, sometimes a

many-to-many relationship identified in early modeling stages is mislabeled, and is
actually two one-to-many relationships between related entities. Or, the business must
keep additional facts about the many-to-many relationship, such as dates or comments.

The result is that an additional entity to keep these facts replaces the many-to-many
relationship. Discuss in detail all many-to-many relationships later in the modeling
process to help ensure that the relationship is modeled correctly.

Logical Model Design Validation

A data model exposes many of the business rules that describe the area being modeled.

Reading the relationships helps you validate that the design of the logical model is
correct. Verb phrases provide a brief summary of the business rules embodi ed by
relationships. Although they do not precisely describe the rules, verb phrases do provide

an initial sense of how the entities are connected.

If you choose your verb phrases correctly, you can read a relationship from the parent
to the child using an active verb phrase.

Example:

A PLANE FLIGHT <transports> many PASSENGERs.

Verb phrases can also be read from the perspective of the child entity. You can often
read from the child entity perspective using passive verb phrases.

Example:

Many PASSENGERs <are transported by> a PLANE FLIGHT.

Verifying that each verb phrase in the model results in valid statements is a good
practice. Reading your model back to the business analysts and subject matter experts is
a good way to verify that it correctly captures the business rules.

Data Model Example

Chapter 3: Logical Models 25

Data Model Example

The following model of a database was constructed for a hypothetical video store:

The data model of the video store, with definitions of the objects presented on it, makes

the following assertions:

■ A MOVIE is in stock as one or more MOVIE COPYs. Information recorded about a
MOVIE includes its name, a rating, and a rental rate. The general condition of each

MOVIE COPY is recorded.

■ The store's CUSTOMERs rent the MOVIE COPYs. A MOVIE RENTAL RECORD records
the information about the rental of a MOVIE COPY by a CUSTOMER. The same
MOVIE COPY can, over time, be rented to many CUSTOMERs.

■ Each MOVIE RENTAL RECORD also records a due date for the movie and a status

indicating whether it is overdue. Depending on a CUSTOMER's previous relationship
with the store, a CUSTOMER is assigned a credit status code that indicates whether
the store accepts checks or credit cards for payment, or accepts only cash.

■ The store's EMPLOYEEs are involved with many MOVIE RENTAL RECORDs, as

specified by an involvement type. There must be at least one EMPLOYEE involved
with each record. Because the same EMPLOYEE might be involved with the same
rental record several times on the same day, involvements are distinguished with a

timestamp.

Data Model Example

26 Data Modeling Overview Guide

■ An overdue charge is sometimes collected on a rental of a MOVIE COPY. OVERDUE
NOTICEs remind a CUSTOMER to return a movie. An EMPLOYEE is sometimes listed

on an OVERDUE NOTICE.

■ The store keeps salary and address information about each EMPLOYEE. The store
may have to look up CUSTOMERs, EMPLOYEEs, and MOVIEs by name, rather than

by number.

The data model example is relatively small, but it says a lot about the video rental store.

You can get an idea of what a database for the business can look like, and a good picture
of the business. Several different types of graphical objects are presented in this
diagram. The entities, attributes, and relationships, with the other symbols, describe our

business rules. The following sections describe what the different graphical objects
mean, and how to use CA ERwin DM to create your own logical and physical data
models.

Chapter 4: The Key-Based Data Model 27

Chapter 4: The Key-Based Data Model

A key-based (KB) model is a data model that fully describes all of the major data
structures that support a wide business area. The goal of a KB model is to include all
entities and attributes that are of interest to the business.

As its name suggests, a KB model also includes keys. In a logical model, a key identifies

unique instances within an entity. When implemented in a physical model, a key
provides easy access to the underlying data.

The key-based model basically covers the same scope as the Entity Relationship Diagram
(ERD). However, it exposes more of the detail, including the context where detailed
implementation level models can be constructed.

This section contains the following topics:

Key Types (see page 28)
Primary Key Selection (see page 28)
Alternate Key Attributes (see page 30)
Inversion Entry Attributes (see page 31)

Relationships and Foreign Key Attributes (see page 31)

Key Types

28 Data Modeling Overview Guide

Key Types

Whenever you create an entity in your data model, one of the most important questions
to ask is: “How can a unique instance be identified?” To develop a correct logical data
model, you uniquely identify each instance in an entity.

In each entity in a data model, a horizontal l ine separates the attributes into two groups,

key areas and nonkey areas. The area above the line is the key area, and the area below
the line is the nonkey area, or data area. The key area of CUSTOMER contains “customer
id” and the data area contains “customer name,” “customer address,” and “customer
phone.”

Entity and Non-Key Areas

The key area contains the primary key for the entity. The primary key is a set of
attributes used to identify unique instances of an entity. The primary key can be
comprised of one or more primary key attributes, if the chosen attributes form a unique

identifier for each instance in an entity.

An entity usually has many nonkey attributes, which appear below the horizontal l ine. A
nonkey attribute does not uniquely identi fy an instance of an entity. For example, a

database can have multiple instances of the same customer name, which means that
“customer name” is not unique. "customer name" would probably be a nonkey
attribute.

Primary Key Selection

Choosing the primary key of an entity i s an important step that requires serious

consideration. Before you actually select a primary key, consider several attributes,
which are referred to as candidate key attributes. Typically, the business user who
knows the business and business data can hel p identify candidate keys.

For example, to use the EMPLOYEE entity in a data model (and later in a database)
correctly, you uniquely identify instances. In the customer table, you could choose from
several potential key attributes including: the employee name, a unique employee
number assigned to each instance of EMPLOYEE, or a group of attributes, such as name

and birth date.

Primary Key Selection

Chapter 4: The Key-Based Data Model 29

The rules that you use to select a primary key from the list of all candidate keys are
stringent. The rules can be consistently applied across all types of databases and

information. The rules state that the attribute or attribute group must:

■ Uniquely identify an instance.

■ Never include a NULL value.

■ Not change over time. An instance takes its identity from the key. If the key
changes, it is a different instance.

■ Be as short as possible, to facil itate indexing and retrieval. If you must use a key
that is a combination of keys from other entities, verify that each part of the key

adheres to the other rules.

Example:

Consider which attribute you would select as a primary key from the following list of
candidate keys for an EMPLOYEE entity:

■ employee number

■ employee name

■ employee social security number

■ employee birth date

■ employee bonus amount

If you use the rules in the preceding list to find candidate keys for EMPLOYEE, you could

compose the following analysis of each attribute:

■ “employee number” is a candidate key because it is unique for all EMPLOYEEs

■ “employee name” is probably not a good candidate because multip le employees

can have the same name, such as Mary Jones.

■ “employee social security number” is unique in most instances, but every
EMPLOYEE may not have one.

■ The combination of “employee name” and “employee birth date” may work, unless

there is more than one John Smith born on the same date and employed by our
company. This combination could be a candidate key.

■ Only some EMPLOYEEs of our company are eligible for annual bonuses. Therefore,

“employee bonus amount” can be expected to be NULL in many cases. As a result, it
cannot be part of any candidate key.

Alternate Key Attributes

30 Data Modeling Overview Guide

After analysis, there are two candidate keys. One is “employee number” and the other is
the group of attributes containing “employee name” and “employee birth date.”

“employee number” is selected as the primary key because it is the shortest and helps
ensure uniqueness of instances.

When choosing the primary key for an entity, data architects often assign a surrogate

key. A surrogate key is an arbitrary number that is assigned to an instance to identify it
within an entity uniquely. “employee number” is an example of a surrogate key. A
surrogate key is often the best choice for a primary key. A surrogate key is short, can be
accessed the fastest, and helps ensure unique identification of each instance. The

system can also automatically generate surrogate keys so that numbering is sequential
and does not include any gaps.

A primary key chosen for the logical model is not always the primary key used to access
the table efficiently in a physical model. The primary key can be changed to suit the

needs and requirements of the physical model and database at any point.

Alternate Key Attributes

After you select a primary key from a list of candidate keys, designate some or all of the
remaining candidate keys as alternate keys. Alternate keys are often used to identify the

different indexes, which are used to access the data quickly. In a data model, an
alternate key is designated by the symbol (AKn). n is a number that is placed after the
attributes that form the alternate key group. In the EMPLOYEE entity, “employee name”
and “employee birth date” are members of the alternate key group.

Inversion Entry Attributes

Chapter 4: The Key-Based Data Model 31

Inversion Entry Attributes

Unlike a primary key or an alternate key, an inversion entry is an attribute or set of
attributes that are commonly used to access an entity, but that may not result in finding
exactly one instance of an entity. In a data model, the symbol IEn is placed after the
attribute.

For example, in addition to locating information in an employee database using an
employee's identification number, a business may want to search by employee name.
Often, a name search results in multiple records, which requires an additional step to
find the exact record. By assigning an attribute to an inversion entry group, a

non-unique index is created in the database.

Note: An attribute can belong to an alternate key group as well as an inversion entry
group.

Relationships and Foreign Key Attributes

A foreign key is the set of attributes that define the primary key in the parent entity. The
set of attributes migrates through a relationship from the parent to the child entity. In a
data model, a foreign key is designated by the symbol (FK) after the attribute name.
Notice the (FK) next to “team id” in the following figure:

Relationships and Foreign Key Attributes

32 Data Modeling Overview Guide

Dependent and Independent Entities

As you develop your data model, you may discover certain entities that depend upon
the value of the foreign key attribute for uniqueness. For these entities, the foreign key
must be a part of the primary key of the child entity (above the line) to define each

entity uniquely.

In relational terms, a child entity that depends on the foreign key attribute for
uniqueness is named a dependent entity. In IDEF1X notation, dependent entities are
represented as round-cornered boxes.

Entities that do not depend on any other entity in the model for identification are

named independent entities. In IE and IDEF1X, independent entities are represented as
square-cornered boxes.

Dependent entities are further classified as existence dependent, which means the
dependent entity cannot exist unless its parent does, and identification dependent,
which means that the dependent entity cannot be identified without using the key of

the parent. Because PLAYERs can exist if they are not on a TEAM, the PLAYER entity is
identification-dependent, but not existence-dependent.

In contrast, there are situations where an entity is existence-dependent on another
entity. Consider two entities: ORDER, which a business uses to track customer orders,

and LINE ITEM, which tracks individual items in an ORDER. The relationship between
these two entities can be expressed as An ORDER <contains> one or more LINE ITEMS.
In this case, LINE ITEM is existence-dependent on ORDER, because it makes no sense in

the business context to track LINE ITEMS unless there is a related ORDER.

Relationships and Foreign Key Attributes

Chapter 4: The Key-Based Data Model 33

Identifying Relationships

In IDEF1X notation, the type of the relationship that connects two entities enforces the
concept of dependent and independent entities. If you want a foreign key to mi grate to
the key area of the child entity (and create a dependent entity as a result), you can

create an identifying relationship between the parent and child entities. A solid l ine
connecting the entities indicates an identifying relationship. In IDEF1X notation, the line
includes a dot on the end nearest to the child entity, as shown in the following figure:

In IE notation, the line includes a crow's foot at the end of the relationship nearest to
the child entity:

Note: Standard IE notation does not include rounded corners on entities. Rounded
entity corners are an IDEF1X symbol included in IE notation to help ensure compatibil ity
between methods.

There are advantages to contributing keys to a child entity through identifying
relationships, such as making some physical system queries more straightforward.

However, there are also many disadvantages. Some advanced relational theory suggests
that contribution of keys not occur in this way. Instead, entity identification is attained
through using a logical handle or surrogate key that the system user does not see, in
addition to the entity's primary key. Data architects who are interested in this relational

theory are encouraged to review the work of E. F. Codd and C. J. Date.

Relationships and Foreign Key Attributes

34 Data Modeling Overview Guide

Nonidentifying Relationships

A nonidentifying relationship also connects a parent entity to a child entity. But, when a
nonidentifying relationship connects two entities, the foreign key migrates to the
nonkey area of the child entity (below the line).

A dashed line connecting the entities indicates a nonidentifying relationship. If you
connect the TEAM and PLAYER entities in a nonidentifying relationship, the “team id”
migrates to the nonkey as shown in the following figure:

Because the migrated keys in a nonidentifying relationship are not part of the primary
key of the child, nonidentifying relationships do not result in any identification

dependency. In this case, PLAYER is considered an independent entity, just l ike TEAM.

However, the relationship can reflect existence dependency if the business rule for the
relationship specifies that the foreign key cannot be NULL (missing). If the foreign key
must exist, this implies that an instance in the child entity can only exist if an associated

parent instance also exists.

Note: Identifying and nonidentifying relationships are not a feature of the IE
methodology. These relationships are included in your diagram as a solid or dashed
relationship l ine to help ensure compatibil ity between IE and IDEF1X methods.

Relationships and Foreign Key Attributes

Chapter 4: The Key-Based Data Model 35

Rolenames

When foreign keys migrate from the parent entity in a relationship to the child entity,
they are serving two roles in the model in terms of stated busines s rules. To understand
both roles, it is helpful to rename the migrated key to show its role in the child entity.

This name assigned to a foreign key attribute is known as a rolename. A rolename
declares a new attribute, whose name is intended to describe the business statement
embodied by the relationship that contributes the foreign key.

The foreign key attribute of “player team id.team id” in the PLAYER entity shows the

syntax for defining and displaying a rolename. The first half (before the period) is the
rolename. The second half is the original name of the foreign key, sometimes known as
the base name.

Once assigned to a foreign key, a rolename migrates across a relationship similar to any
other foreign key. For example, suppose that you extend the example to show which

PLAYERs have scored in various games throughout the season. The “player team id”
rolename migrates to the SCORING PLAY entity (with any other primary key attributes in
the parent entity), as shown here:

Relationships and Foreign Key Attributes

36 Data Modeling Overview Guide

Note: A rolename is also used to model compatibil ity with legacy data models where
the foreign key often had a different name from the primary key.

Chapter 5: Naming and Defining Entities and Attributes 37

Chapter 5: Naming and Defining Entities
and Attributes

In data modeling, and in systems development in general, it is important to select clear
and well thought out names for objects. The results of your efforts become a clear,
concise, and unambiguous model of a business area.

Naming standards and conventions are identical for all types of logical models, including
both the Entity Relationship diagrams (ERD) and Key-based (KB) diagrams.

This section contains the following topics:

Entity and Attribute Names (see page 37)

Entity Definitions (see page 39)
Attribute Definitions (see page 41)
Rolenames (see page 43)

Definitions and Business Rules (see page 44)

Entity and Attribute Names

The most important rule to remember when naming entities is that entity names are
always singular. Singular entity names facil itate reading the model with declarative
statements. For example, “A FLIGHT <transports> zero or more PASSENGERs” and “A

PASSENGER <is transported by> one FLIGHT.” When you name an entity, you are also
naming each instance. For example, each instance of the PASSENGER entity is an
individual passenger, not a set of passengers.

Attribute names are also singular. “person name,” “employee SSN,” “employee bonus
amount,” for example, are correctly named attributes. Naming attributes in the singular
helps to avoid normalization errors, such as representing more than one fact with a
single attribute. The attributes “employee child names” or “start or end dates” are

plural, and highlight errors in the attribute design.

Entity and Attribute Names

38 Data Modeling Overview Guide

A good rule to use when naming attributes is to use the entity name as a prefix. The rule
here is:

■ Prefix qualifies

■ Suffix clarifies

Using this rule, you can easily validate the design and eliminate many common design

problems. For example, in the CUSTOMER entity, you can name the attributes
“customer name,” “customer number,” “customer address,” and so on. Suppose you
wanted to name an attribute “customer invoice number.” Use the rule to verify that the
suffix “invoice number” tells you more about the prefix “customer.” Because it does not,

move the attribute to a more appropriate location, such as INVOICE.

Sometimes it is difficult to give an entity or attribute a name without first giving it a
definition. As a general principle, providing a good definition for an entity or attribute is
as important as providing a good name. The ability to find meaningful names comes
with experience and a fundamental understanding of what the model represents.

Because the data model is a description of a business, it is best to choose meaningful
business names wherever that is possible. If there is no business name for an entity,
assign the entity a name that fits its purpose in the model.

Synonyms, Homonyms, and Aliases

Not everyone speaks the same language. Not everyone is always precise in the use of
names. Because names identify entities and attributes in a data model, verify that
synonyms are resolved so that they do not represent redundant data. Precisely define

names so that each person who reads the model can understand which facts are
captured in which entity.

Select a name that clearly communicates a sense of what the entity or attribute
represents. For example, there is some difference among things named PERSON,

CUSTOMER, and EMPLOYEE. Although they can all represent an individual, they have
distinct characteristics or qualities. The business user tells you whether PERSON and
EMPLOYEE are two different things, or simply synonyms for the same thing.

Select names carefully, and be wary of call ing two different things by the same name.
For example, if a business area insists on calling its customers “consumers,” do not insist

on the customer name. Perhaps there is an alias, or there is a new “thing” tha t is distinct
from, although similar to, another “thing.” In this case, perhaps CONSUMER is a
category of CUSTOMER that can participate in relationships that are not available for

other categories of CUSTOMER.

You can enforce unique naming in the modeling environment. Unique naming avoids
the accidental use of homonyms, ambiguous names, or duplication of entities or
attributes in the model.

Entity Definitions

Chapter 5: Naming and Defining Entities and Attributes 39

Entity Definitions

Defining the entities in your logical model is essential to the clarity of the model and
elaborates on the purpose of the entity. Defining entities also clarify which facts you
want to include in the entity. Undefined entities or attributes can be misinterpreted in
later modeling efforts, and possibly deleted or unified based on the misinterpretation.

Writing a good definition can be difficult. The best definitions are created using the

points of view of many different business users and functional groups within the
organization. Definitions that can pass the scrutiny of many disparate users provide a
number of benefits including:

■ Clarity across the enterprise

■ Consensus about a single fact having a single purpose

■ Easier identification of categories of data

Most organizations and individuals develop their own conventions or standards for
definitions. Long definitions tend to take on a structure that helps the reader to
understand the “thing” that is being defined. Some of these definitions can go on for

several pages (CUSTOMER, for example). Because IDEF1X and IE do not provide
standards for definitions, you can adopt the following items as a basic standard for
definition structure:

■ Description

■ Business example

■ Comments

Descriptions

A description must be a clear and concise statement that tells whether an object is or is
not the thing you are trying to define. Often such descriptions can be fairly short. Be
careful, however, that the description is not too general or uses terms that are not
defined. Here are a couple of examples, one of good quality and one that is

questionable:

Example of good description:

A COMMODITY is something that has a value that can be determined in an exchange.

The preceding example is a good description. Because someone is will ing to trade
something, you know that something is a COMMODITY. If someone gives you three
peanuts and a stick of gum for a marble, then you know that a marble is a COMMODITY.

Entity Definitions

40 Data Modeling Overview Guide

Example of bad description:

A CUSTOMER is someone who buys something from our company.

The preceding example is not a good description. Because you know that the company
also sells products to other businesses, you can misunderstand the word “someone”.
The business may also want to track potential CUSTOMERs, not simply customers who

have already bought something from the company. You can also define “something”
more fully to describe whether the sale is of products, services, or some combination of
the two.

Business Examples

Providing typical business examples of the thing being defined is important, because
good examples help the reader understand a definition. Comments about peanuts,
marbles, or something related to your business can help a reader to understand the
concept of a COMMODITY. The definition states that a commodity has value. The

example can help to show that value is not always measured in money.

Comments

You can also include general comments for a description. Comments can include the

following information:

■ The person responsible for the definition

■ The source of the information for the definition

■ The state of the definition, such as when the definition was last changed

For some entities, also explain how it and a related entity or entity name differ. For
example, a CUSTOMER can be distinguished from a PROSPECT.

Definition References and Circularity

An individual definition can look good, but when viewed together they can be circular.

Without some care, circularity can happen with entity and attribute definitions.

Example:

■ CUSTOMER: Someone who buys one or more of our PRODUCTs

■ PRODUCT: Something we offer for sale to CUSTOMERs

When you define entities and attributes in your data model, it is important that you
avoid these circular references.

Attribute Definitions

Chapter 5: Naming and Defining Entities and Attributes 41

Business Glossary Construction

A business glossary helps you use common business terms when defining an entity or
attribute.

Definition example:

“A CURRENCY-SWAP is a complex agreement between two PARTYs where they agree to
exchange cash flows in two different CURRENCYs over a timeframe. Exchanges can be
fixed over the term of the swap, or may float. Swaps are often used to hedge currency
and interest rate risks.”

In the preceding example, defined terms within a definition are highlighted. Using this
style makes it unnecessary to define terms each time they are used, because people can
look them up whenever needed.

Providing base definitions of common business terms that are not entity or attribute
names and referring to these definitions is a good idea. You can use a glossary of

commonly used terms separate from the model. Common business terms are
highlighted with bold or italic font, as shown in the preceding example.

This strategy seems like it can lead to going back and forth among definitions frequently.
The alternative, however, is to define each term completely every time it is used. When

internal definitions appear in many places, they must be maintained in many places. The
probability that a change is applied to all of them at the same time is small.

Developing a glossary of common business terms can serve several purposes. A glossary

can become the base for modeling definitions, and individually it can provide significant
value to the business to help people communicate.

Attribute Definitions

Defining all attributes clearly is important, and the same rules apply. When you compare
an attribute to a definition, verify whether it fits well and is not incomplete.

Example:

account open date

The date on which the ACCOUNT was opened. A further definition of what “opened”

means is needed before the definition is clear and complete.

Define attributes using the same basic structure as entity definitions. Attribute
definitions must include a description, examples, and comments. The definitions must
also contain, whenever possible, validation rules that specify which facts are accepted

as valid values for that attribute.

Attribute Definitions

42 Data Modeling Overview Guide

Validation Rules

A validation rule identifies a set of values that an attribute is allowed to take. A
validation rule constrains or restricts the domain of values that are acceptable. Values
have meanings in both an abstract and a business sense. For example, if “person name,”

is defined as the preferred form of address chosen by the PERSON, it is constrained to
the set of all character strings. You can define any validation rules or valid values for an
attribute as a part of the attribute definition. You can assign these validation rules to an
attribute using a domain. Supported domains include text, number, datetime, and blob.

Definitions of attributes, such as codes, identifiers, or amounts, often are not good
business examples. Including a description of the validation rules or valid values of the
attribute is a good idea. When you define a validation rule, it is better to go beyond
simply l isting the values that an attribute can take. For example, you define the attribute

“customer status” as follows:

Customer status: A code that describes the relationship between the CUSTOMER and
our business. Valid values: A, P, F, N.

The validation rule specification is not helpful because it does not define what the codes
mean. You can better describe the validation rule using a table or l ist of values, such as

is described in the following table:

Valid value Meaning

A: Active The CUSTOMER is currently involved in a
purchasing relationship with our company.

P: Prospect Someone with whom we are interested in
cultivating a relationship, but with whom

we have no current purchasing
relationship.

F: Former The CUSTOMER relationship has lapsed. In

other words, there has been no sale in the
past 24 months.

N: No business accepted The company has decided that no
business relationships exist with this

CUSTOMER.

Rolenames

Chapter 5: Naming and Defining Entities and Attributes 43

Rolenames

When a foreign key is contributed to a child entity through a relati onship, you can write
a new or enhanced definition for the foreign key attributes. The definition explains the
foreign key attribute usage in the child entity. Assign a rolename to the definition,
especially when the same attribute is contributed to the sa me entity more than once.

Duplicated attributes can appear identical, but because they serve two different
purposes, they cannot have the same definition.

Consider the following example where FOREIGN EXCHANGE TRADE has two
relationships to CURRENCY.

The key of CURRENCY is “currency code,” which is the identifier of a valid CURRENCY
that you want to track. You can see from the relationships that one CURRENCY is

“bought by” and one is “sold by” a FOREIGN EXCHANGE TRADE.

You also see that the identifier of the CURRENCY (the “currency code”) i s used to
identify each of the two CURRENCYs. The identifier of the one that is bought is named
“bought currency code.” The identifier of the one that is sold is named “sold currency

code.” The rolenames show that the attributes are not the same thing as “currency
code.”

Trading a CURRENCY for the same CURRENCY at the same time and exchange rate is not
logical. For a given transaction, such as the instance of FOREIGN EXCHANGE TRADE,
"bought currency code” and “sold currency code” must be different. Provid ing different

definitions to the two rolenames captures the difference between the two currency
codes.

Attribute/Rolename Attribute Definition

currency code The unique identifier of a CURRENCY.

bought currency code The identifier (“currency code”) of the CURRENCY
bought by (purchased by) the FOREIGN EXCHANGE

TRADE.

Definitions and Business Rules

44 Data Modeling Overview Guide

sold currency code The identifier (“currency code”) of the CURRENCY sold

by the FOREIGN EXCHANGE TRADE.

The definitions and validations of the bought and sold codes are based on “currency
code.” “currency code” is known as a base attribute.

IDEF1X standard dictates that if two attributes with the same name migrate from the
same base attribute to an entity, the attributes must be unified. The result of unification

is a single attribute migrated through two relationships. Because of the IDEF1X
standard, foreign key attributes are also automatically unified. If you do not want to
unify migrated attributes, you can rolename the attributes when you name the

relationship, in the Relationship Editor.

Definitions and Business Rules

Business rules are a critical part of the data model. Business rules take the form of
relationships, rolenames, candidate keys, defaults, and other modeling structures.
Modeling structures include generalization categories, referential integrity, and

cardinality. Business rules are also captured in entity and attribute definitions and
validation rules.

For example, a CURRENCY entity can be defined as follows:

The set of all valid currencies recognized anywhere in the world, or a subset of these that
our company has decided to use in its day to day business operations.

The entity definition contains a subtle, but important distinction. In the latter case,
there is a business rule, or policy statement, involved. This rule manifests itself in the

validation rules for “currency code.” This rule restricts the valid values for “currency
code” to the values used by the business. Maintenance of the business rule becomes a
task of maintaining the table of valid values for CURRENCY. To permit or prohibit trading

of CURRENCYs, you simply create or delete instances in the table of valid values.

The attributes “bought currency code” and “sold currency code” are similarly restricted.
However, both are further restricted using a validation rule that says “bought currency
code” and “sold currency code” cannot be equal. Therefore, each is dependent on the

value of the other in its actual use. Validation rules can be addressed in the definitions
of attributes, and can also be defined explicitly using validation rules, default values, and
valid value lists.

Chapter 6: Relationships 45

Chapter 6: Relationships

Relationships are a bit more complex than they seem at first. Relationships carry
information that describes the rules of the business and the constraints on creating,
modifying, and deleting instances. For example, you can use cardinality to define how
many instances are involved in both the child and parent entities in the relationship. You

can also specify how you want to handle database actions such as INSERT, UPDATE, and
DELETE using referential integrity rules.

Data modeling also supports highly complex relationship types. Relationship types let

you construct a logical model of your data that is understandable to both business and
systems experts.

This section contains the following topics:

Relationship Cardinality (see page 45)

Referential Integrity (see page 49)
Additional Relationship Types (see page 55)

Relationship Cardinality

The many in a one-to-many relationship does not mean that there must be more than

one instance of the child connected to a parent. The many in one-to-many really means
that there are zero, one, or more instances of the child paired up to the parent.

Cardinality is the relational property that defines exactly how many instances appear in
a child table for each corresponding instance in the parent table. IDEF1X and IE differ in

the symbols that are used to specify cardinality. However, both methods provide
symbols to denote one or more, zero or more, zero or one, or exactly N, as explained in
the following table:

Cardinality Description IDEF1X Notation Identifying
Nonidentifying

IE Notation Identifying
Nonidentifying

One to zero, one, or more

Relationship Cardinality

46 Data Modeling Overview Guide

Cardinality Description IDEF1X Notation Identifying
Nonidentifying

IE Notation Identifying
Nonidentifying

One to one or more

P P

One to zero or one

Z Z

Zero or one to zero, one, or more

(nonidentifying only)

Zero or one to zero or one
(nonidentifying only)

Z

Cardinality lets you specify additional business rules that apply to the relationship. In the
following figure, the business has decided to identify each MOVIE COPY based on both

the foreign key “movie-number” and a surrogate key “copy-number.” Also, each MOVIE
is available as one or more MOVIE COPYs. The business has also stated that the
relationship is identifying, that MOVIE COPY cannot exist unless there is a corresponding
MOVIE.

Relationship Cardinality

Chapter 6: Relationships 47

The MOVIE/MOVIE COPY model also specifies the cardinality for the relationship. The
relationship l ine shows that there is exactly one MOVIE, and only one, participating in a

relationship. MOVIE is the parent in the relationship.

By making MOVIE COPY the child in the relationship, the business defined a MOVIE
COPY as one of several rentable copies of a movie title. The business also determined

that to be included in the database, a MOVIE must have at least one MOVIE COPY.
Therefore, the cardinality of the is available as relationship is one-to-one or more. The P
symbol next to the dot represents cardinality of one or more. As a result, you also know
that a MOVIE with no copies is not a legitimate instance in this database.

In contrast, the business may want to know about all of the MOVIEs in the world, even
MOVIEs for which they have no copies. So their business rule is that for a MOVIE to exist
(be recorded in their information system) there can be zero, one, or more copies. To
record this business rule, the P is removed. When cardinality is not explicitly indicated in

the diagram, cardinality is one-to-zero, one, or more.

Cardinality in Nonidentifying Relationships

Nonidentifying relationships contribute keys from a parent to a child entity. However,
by definition, some (or all) of the keys do not become part of the key of the child. This

means that the child is not identification-dependent on the parent. There can also be
situations where an entity at the many end of the relationship can exist without a
parent, or existence-dependent.

If the relationship is mandatory from the perspective of the child, then the child is
existence-dependent on the parent. If it is optional, the child is neither existence or
identification-dependent with respect to that relationship (al though it may be
dependent in other relationships). To indicate the optional case, IDEF1X includes a

diamond at the parent end of the relationship l ine and IE includes a circle.

Relationship Cardinality

48 Data Modeling Overview Guide

In the preceding examples, the attribute “passenger id” is a foreign key attribute of
SEAT. Because the “passenger id” does not identify the SEAT but identifies the

PASSENGER occupying the SEAT, the business has determined that the relationship is
nonidentifying. The business has also stated that the SEAT can exist without any
PASSENGER, so the relationship is optional. When a relationship is optional, the diagram

includes either a diamond in IDEF1X, or a circle in IE notation. Otherwise, the cardinality
graphics for nonidentifying relationships are the same as for identifying rel ationships.

The cardinality for the relationship is indicated with a Z in IDEF1X and a single l ine in IE.
The cardinality states that a PASSENGER <may occupy> zero or one of these SEATs on a
fl ight. Each SEAT can be occupied, in which case the PASSENGER occupying the seat is

identified using “passenger id.” It can also be unoccupied, in which case the “passenger
id” attribute is empty (NULL).

Referential Integrity

Chapter 6: Relationships 49

Referential Integrity

Because a relational database relies on data values to implement relationships, the
integrity of the data in the key fields is important. For example, if you change a value in
a primary key column of a parent table, reflect this change in each child table where the
column appears as a foreign key. The action that is applied to the foreign key value

varies depending on the rules defined by the business.

For example, a business that manages multiple projects might track its employees and
projects in a model similar to the one in the following example. The business has
determined that the relationship between PROJECT and PROJECT EMPLOYEE is

identifying, so the primary key of PROJECT becomes a part of the primary key of
PROJECT EMPLOYEE.

Referential Integrity

50 Data Modeling Overview Guide

The business also decides that for each instance of PROJECT EMPLOYEE there is exactly
one instance of PROJECT, which indicates PROJECT EMPLOYEE is existence-dependent

on PROJECT.

What would happen if you were to delete an instance of PROJECT? If the business does
not want to track instances in PROJECT EMPLOYEE if PROJECT is deleted, delete all

instances of PROJECT EMPLOYEE that inherited part of their key from the deleted
PROJECT.

The rule that specifies the action taken when a parent key is deleted is known as
referential integrity. The referential integrity option chosen for this action in this

relationship is Cascade. Each time an instance of PROJECT is deleted, this Delete
cascades to the PROJECT EMPLOYEE table. The Delete action also deletes all related
instances in PROJECT EMPLOYEE.

Available actions for referential integrity include the following:

Cascade

If an instance in the parent entity is deleted, each related instance in the child
entity must also be deleted.

Restrict

Deletion of an instance in the parent entity is prohibited if the following is true:

■ One or more related instances in the child entity exist.

■ Deletion of an instance in the child entity is prohibited if there is a related
instance in the parent entity.

Set Null

If an instance in the parent entity is deleted, the foreign key attributes in each
related instance in the child entity are set to NULL.

Set Default

If an instance in the parent entity is deleted, the foreign key attributes in each
related instance in the child entity are set to the specified default value.

<None>

No referential integrity action is required. Not every action must have a referential
integrity rule associated with it. For example, a business may decide that referential
integrity is not required when deleting an instance in a child entity. This business
rule is valid where the cardinality is zero, one to zero, or one or more, because

instances in the child entity can exist even if there are no related instances in the
parent entity.

Referential Integrity

Chapter 6: Relationships 51

Although referential integrity is not a formal part of the IDEF1X or IE languages, it does
capture business rules that indicate how the completed database works. Referential

integrity is a critical part of data modeling and provides a method for both capture and
display of referential integrity rules.

Once referential integrity is defined, the facil itator or analyst tests the referential

integrity rules defined by the business users. The facil itator or analyst asks questions or
works through different scenarios that show the results of the business decision. When
the requirements are defined and full y understood, specific referential integrity actions,
such as Restrict or Cascade can be recommended.

Referential Integrity Options

Referential integrity rules vary depending on:

■ Whether or not the entity is a parent or child in the relationship

■ The database action that is implemented

As a result, in each relationship there are six possible actions for which referential

integrity can be defined:

■ PARENT INSERT

■ PARENT UPDATE

■ PARENT DELETE

■ CHILD INSERT

■ CHILD UPDATE

■ CHILD DELETE

Referential Integrity

52 Data Modeling Overview Guide

The following figure shows referential integrity rules in the EMPLOYEE-PROJECT model:

The referential integrity rules captured in the figure show the business decision to
cascade all deletions in the PROJECT entity to the PROJECT-EMPLOYEE entity. This rule is
called PARENT DELETE CASCADE, and is noted in the figure by the letters D:C placed at

the parent end of the specified relationship. The first letter in the referential integrity
symbol always refers to the database action: I(Insert), U(Update), or D(Delete). The
second letter refers to the referential integrity option: C(Cascade), R(Restrict), SN(Set
Null), and SD(Set Default).

In the figure, no referential integrity option was specified for PARENT INSERT, so
referential integrity for insert (I:) is not displayed on the diagram.

Referential Integrity

Chapter 6: Relationships 53

RI, Cardinality, and Identifying Relationships

In the figure below, the relationship between PROJECT and PROJECT-EMPLOYEE is
identifying. Therefore, the valid options for referential integrity for the parent entity in
the relationship, PROJECT, include Cascade and Restrict:

Cascade indicates that all instances of PROJECT-EMPLOYEE that are affected by the
deletion of an instance of PROJECT should also be deleted. Restrict indicates that a
PROJECT cannot be deleted until all instances of PROJECT-EMPLOYEE that have

inherited its key have been deleted. If there are any left, the Delete is restricted.

One reason to restrict the deletion might be that the business needs to know other facts
about a PROJECT-EMPLOYEE such as the date started on the project. If you Cascade the
Delete, you lose this supplementary information.

When you update an instance in the parent entity, the business has also determined

that the updated information should cascade to the related instanc es in the child entity.

As you can see in the example, different rules apply when an instance is inserted,
updated, or deleted in the child entity. When an instance is inserted, for example, the
action is set to Restrict. This rule appears as I:R placed next to the child entity in the

relationship. This means that an instance can be added to the child entity only if the
referenced foreign key matches an existing instance in the parent entity. So, you can
insert a new instance in PROJECT-EMPLOYEE only if the value in the key field matches a

key value in the PROJECT entity.

Referential Integrity

54 Data Modeling Overview Guide

RI, Cardinality, and Non-Identifying Relationships

If the business decides that PROJECT-EMPLOYEEs are not existence- or
identification-dependent on PROJECT, you can change the relationship between
PROJECT and PROJECT-EMPLOYEE to optional, non-identifying. In this type of

relationship, the referential integrity options are very different:

Since a foreign key contributed across a non-identifying relationship is allowed to be
NULL, one of the referential integrity options you can specify for PARENT DELETE is Set
Null. Set Null indicates that if an instance of PROJECT is deleted, then any foreign key

inherited from PROJECT in a related instance in PROJECT-EMPLOYEE should be set to
NULL. The Delete does not cascade as in our previous example, and it is not prohibited
(as in Restrict). The advantage of this approach is that you can preserve the information
about the PROJECT-EMPLOYEE while effectively breaking the connection between the

PROJECT-EMPLOYEE and PROJECT.

Use of Cascade or Set Null should reflect business decisions about maintaining the
historical knowledge of relationships, represented by the foreign keys.

Additional Relationship Types

Chapter 6: Relationships 55

Additional Relationship Types

As you develop a logical model, you may find some parent/child relationships that do
not fall into the standard, one-to-many relationships. These relationship exceptions
include:

Many-to-many relationships

A relationship where one entity <owns> many instances of a second entity, and the
second entity also <owns> many instances of the first entity. For example, an
EMPLOYEE <has> one or more JOB TITLEs, and a JOB TITLE <is applied to> one or
more EMPLOYEEs.

N-ary relationships

A simple one-to-many relationship between two entities is termed binary. When a
one-to-many relationship exists between two or more parents and a single child

entity, it is termed an n-ary relationship.

Recursive relationships

Entities that have a relationship to themselves take part in recursive relationships.
For example, for the EMPLOYEE entity, you could include a relationship to show

that one EMPLOYEE <manages> one or more EMPLOYEEs. This type of relationship
is also used for bil l -of-materials structures, to show relationships between parts.

Subtype relationships

Related entities are grouped together so that all common attributes appear in a
single entity, but all attributes that are not in common appear in separate, related
entities. For example, the EMPLOYEE entity could be subtyped into FULL-TIME and
PART-TIME.

Many-to-Many Relationships

In key-based and fully-attributed models, relationships must relate zero or one
instances in a parent entity to a specific set of instances in a child entity. As a result of
this rule, many-to-many relationships that were discovered and documented in an ERD

or earlier modeling phase must be broken down into a pair of one-to-many
relationships.

This figure shows a many-to-many relationship between STUDENTs and COURSEs. If you

did not eliminate the many-to-many relationship between COURSE and STUDENT, the
key of COURSE would be included in the key of STUDENT, and the key of STUDENT
would be included in the key of COURSE. Since COURSEs are identified by their own
keys, and likewise for STUDENTs this, creates an endless loop.

Additional Relationship Types

56 Data Modeling Overview Guide

You can eliminate a many-to-many relationship by creating an associative entity. In the
following figure, the many-to-many relationship between STUDENT and COURSE is

resolved by adding the COURSE-ROSTER entity.

COURSE-ROSTER is an associative entity, which means it is us ed to define the
association between two related entities.

Many-to-many relationships often hide meaning. In the diagram with a many-to-many
relationship, you know that a STUDENT enrolls in many COURSEs, but no information is

included to show how. When you resolve the many-to-many relationship, you see not
only how the entities are related, but uncover additional information, such as the
“course-time,” which also describes facts about the relationship.

Once the many-to-many relationship is resolved, you are faced with the requirement to
include relationship verb phrases that validate the structure. There are two ways to do
this: construct new verb phrases or use the verb phrases as they existed for the
many-to-many relationship. The most straightforward way is to continue to read the

many-to-many relationship, through the associative entity. Therefore, you can read A
STUDENT <enrolls in> many COURSEs and A COURSE <is taken by> many STUDENTs.
Many modelers adopt this style for constructing and reading a model.

There is another style, which is equally correct, but a bit more cumbersome. The
structure of the model is exactly the same, but the verb phrases are different, and the

model is read in a slightly different way:

Additional Relationship Types

Chapter 6: Relationships 57

You would read: A STUDENT <enrolls in a COURSE recorded in> one or more
COURSE-ROSTERs, and A COURSE <is taken by a STUDENT recorded in> one or more

COURSE-ROSTERs.Although the verb phrases are now quite long, the reading follows the
standard pattern; reading directly from the parent entity to the child.

Whichever style you choose, be consistent. Deciding how to record verb phrases for

many-to-many relationships is not too difficult when the structures are fairly simple, as
in these examples. However, this can become more difficult when the structures
become more complex, such as when the entities on either side of the associative
entities are themselves associative entities, which are there to represent other

many-to-many relationships.

N-ary Relationships

When a single parent-child relationship exists, the relationship is called binary. All of the
previous examples of relationships to this point have been binary relationships.

However, when creating a data model, it is not uncommon to come across n-ary
relationships, the modeling name for relationships between two or more parent entities
and a single child table. An example of an n-ary relationship is shown in the following
figure:

Additional Relationship Types

58 Data Modeling Overview Guide

Like many-to-many relationships, three-, four-, or n-ary relationships are valid
constructs in entity relationship diagrams. Also l ike many-to-many relationships, n-ary

relationships should be resolved in later models using a set of binary relationships to an
associative entity.

If you consider the business rule stated in the figure, you can see that a CONTRACT

represents a three-way relationship among COMPANY, PRODUCT, and CUSTOMER. The
structure indicates that many COMPANYs sell many PRODUCTs to many CUSTOMERs.
When you see a relationship l ike this, however, there are business questions that should
be answered. For example, “Must a product be offered by a company before it can be

sold?” “Can a customer establish a single contract including products from several
different companies?” and, “Do you need to keep track of which customers 'belong to'
which companies?” Depending on the answers, the structures may change.

For example, if a product must be offered by a company before it can be sold, then you
would have to change the structure as follows:

Since PRODUCTs must be offered by COMPANYs, you can create an associative entity to
capture this relationship. As a result, the original three-way relationship to CONTRACT is

replaced by two, two-way relationships.

By asking a variety of business questions, it is l ikely that you will find that most n-ary
relationships can be broken down into a series of relationships to associative entities.

Additional Relationship Types

Chapter 6: Relationships 59

Recursive Relationships

An entity can participate in a recursive relationship (also called fishhook) where the
same entity is both the parent and the child. This relationship is an important one when
modeling data originally stored in legacy DBMSs such as IMS or IDMS that use recursive

relationships to implement bil l of materials structures.

For example, a COMPANY can be the parent of other COMPANYs. As with all
non-identifying relationships, the key of the parent entity appears in the data area of
the child entity. See the following figure:

The recursive relationship for COMPANY includes the diamond symbol to indicate that

the foreign key can be NULL, such as when a COMPANY has no parent. Recursive
relationships must be both optional (diamond) and non-identifying.

The “company-id” attribute is migrated through the recursive relationship, and appears
in the example with the rolename “parent-id.” There are two reasons for this. First, as a

general design rule, an attribute cannot appear twice in the same entity under the same
name. Thus, to complete a recursive relationship, you must provide a rolename for the
migrated attribute.

Second, the attribute “company-id” in the key, which identifies each instance of
COMPANY, is not the same thing as the “company-id” migrated through the

relationship, which identifies the parent COMPANY. You cannot use the same definition
for both attributes, so the migrated attribute must be rolenamed. An example of
possible definitions follows:

company-id

The unique identifier of a COMPANY.

parent-id

The “company-id” of the parent COMPANY. Not all COMPANYs have a parent

COMPANY.

Additional Relationship Types

60 Data Modeling Overview Guide

If you create a sample instance table, such as the one that follows, you can test the rules
in the relationship to ensure that they are valid.

COMPANY

company-id parent-id company-name

C1 NULL Big Monster Company

C2 C1 Smaller Monster Company

C3 C1 Other Smaller Company

C4 C2 Big Subsidiary

C5 C2 Small Subsidiary

C6 NULL Independent Company

The sample instance table shows that Big Monster Company is the parent of Smaller
Monster Company and Other Smaller Company. Smaller Monster Company, in turn, is
the parent of Big Subsidiary and Small Subsidiary. Independent Company is not the

parent of any other company and has no parent. Big Monster Company also has no
parent. If you diagram this information hierarchically, you can validate the information
in the table, as shown in the figure below:

Additional Relationship Types

Chapter 6: Relationships 61

Subtype Relationships

A subtype relationship, also referred to as a generalization category, generalization
hierarchy, or inheritance hierarchy, is a way to group a set of entities that share
common characteristics. For example, you might find during a modeling effort that

several different types of ACCOUNTs exist in a bank such as checking, savings, and loan
accounts, as shown in the figure below:

When you recognize similarities among the different independent entities, you may be
able to collect attributes common to all three types of accounts into a hierarchical

structure.

You can move these common attributes into a higher level entity called the supertype
entity (or generalization entity). Those that are specific to the individual account types
remain in the subtype entities. In this example, you can create a supertype entity called

ACCOUNT to represent the information that is common across the three types of
accounts. The supertype ACCOUNT includes a primary key of “account-number.”

Three subtype entities, CHECKING-ACCOUNT, SAVINGS-ACCOUNT, and LOAN-ACCOUNT,
are added as dependent entities that are related to ACCOUNT using a subtype

relationship.

The result is a structure like the one shown in the figure below:

Additional Relationship Types

62 Data Modeling Overview Guide

In this figure, an ACCOUNT is either a CHECKING-ACCOUNT, a SAVINGS-ACCOUNT, or a

LOAN-ACCOUNT. Each subtype entity is an ACCOUNT and inherits the properties of
ACCOUNT. The three different subtype entities of ACCOUNT are mutually exclusive.

In order to distinguish one type of ACCOUNT from another, you can add the attribute
“account-type” as the subtype discriminator. The subtype discriminator is an attribute
of the category supertype (ACCOUNT) and its value will tell you which type of ACCOUNT

it is.

Once you have established the subtype relationship, you can examine each attribute in
the original model, in turn, to determine if it should remain in the subtype entities, or
move to the supertype. For example, each subtype entity has an “open-date.” If the
definitions of these three kinds of “open-date” are the same, you can move them to the

supertype, and drop them from the subtype entities.

You must analyze each attribute in turn to determine if it remains in the subtype entity
or moves to the supertype entity. In those cases where a single attribute appears in only
some of the subtype entities, you face a more difficult decision. You can either leave the
attribute with the subtype entities or move the attribute up to the supertype. If this

attribute appears in the supertype, the value of the attribute in the supertype will be
NULL when the attribute is not included in the corresponding subtype entity.

Which alt er native to choose depends on how many of t he subtype entit ies share the common att ribute. I f m ost do, it is good pract ice, at higher level m odels , t o move t hem up. I f f ew subtype entit ies share t he att ribute, it is best t o leave t hem where t hey are. I n lower level m odels , depending on t he purpose, it is of ten appropriat e t o leave t he att ributes in t heir subt ype ent ity.

After analysis, the resulting model might appear as follows:

Additional Relationship Types

Chapter 6: Relationships 63

When developing a subtype relationship, you mus t also be aware of any specific
business rules that you need to impose at the subtype level that are not pertinent to

other subtypes of the supertype. For example, LOAN accounts are deleted after they
reach a zero balance. You would not want to delete CHECKING and SAVINGS accounts
under the same conditions.

There can also be relationships that are meaningful to a single subtype and not to any
other subtype in the hierarchy. For example, the LOAN entity needs to be examined, to

ensure that any previous relationships to records of customer payments or assets are
not lost because of a different organizational structure.

Complete Compared to Incomplete Subtype Structures

In IDEF1X, different symbols are used to specify whether or not the set of subtype

entities in a subtype relationship is fully defined. An incomplete subtype indicates that
the modeler feels there may be other subtype entities that have not yet been
discovered. An incomplete subtype is indicated by a single line at the bottom of the

subtype symbol, as shown in the figure below:

Additional Relationship Types

64 Data Modeling Overview Guide

A complete subtype indicates that the modeler is certain that all possible subtype
entities are included in the subtype structure. For example, a complete subtype could

capture information specific to male and female employees, as shown in the figure
below. A complete subtype is indicated by two lines at the bottom of the subtype
symbol.

When you create a subtype relationship, it is a good rule to also create a validation rule

for the discriminator. This helps to ensure that all subtypes have been discovered. For
example, a validation rule for “account-type” might include: C=checking account,
S=savings account, L=loans. If the business also has legacy data with account types of

“O,” the validation rule uncovers the undocumented type and lets you decide if the “O”
is a symptom of poor design in the legacy system or a real account type that you forgot.

Inclusive and Exclusive Relationships

Unlike IDEF1X, IE notation does not distinguish between complete and incomplete

subtype relationships. Instead, IE notation documents whether the relationship is
exclusive or inclusive. However, IDEF1X notation distinguishes between complete and
incomplete; exclusive and inclusive.

In an exclusive subtype relationship, each instance in the supertype can relate to one

and only one subtype. For example, you might model a business rule tha t says an
employee can be either a full -time or part-time employee but not both. To create the
model, you can include an EMPLOYEE supertype entity with FULL-TIME and PART-TIME
subtype entities and a discriminator attribute called “employee-status.” In addition, you

can constrain the value of the discriminator to show that valid values for it include F to
denote full-time and P to denote part-time.

Additional Relationship Types

Chapter 6: Relationships 65

In an inclusive subtype relationship, each instance in the supertype can relate to one or
more subtypes. In our example, the business rule might now state that an employee

could be full -time, part-time, or both. In this example, you can constrain the value of the
discriminator to show that valid values for it include F to denote full -time, P to denote
part-time, and B to denote both full -time and part-time.

Note: In IDEF1X notation, you can represent inclusive subtypes by drawing a separate
relationship between the supertype entity and each subtype entity.

IDEF1X and IE Subtype Notation

The following il lustrates subtype notation in IDEF1X and IE:

 IDEF1X Subtype Notation IE Subtype Notation

Complete Incomplete

Exclusive

Subtype

Inclusive

Subtype

Additional Relationship Types

66 Data Modeling Overview Guide

When to Create a Subtype Relationship

You should create a subtype relationship when:

■ Entities share a common set of attributes. This was the case in our previous
examples.

■ Entities share a common set of relationships. This has not been explored but,
referring back to the account structure, you can, as needed, collect any common
relationships that the subtype entities had into a single relationship from the
generic parent. For example, if each account type is related to many CUSTOMERs,

you can include a single relationship at the ACCOUNT level, and eliminate the
separate relationships from the individual subtype entities.

■ Business model demands that the subtype entities should be exposed in a model
(usually for communication or understanding purposes) even if the subtype entities
have no attributes that are different, and even if they participate in no relationships

distinct from other subtype entities. Remember that one of the major purposes of a
model is to assist in communication of information structures, and if showing
subtype entities assists communication, then show them.

Chapter 7: Normalization Problems and Solutions 67

Chapter 7: Normalization Problems and
Solutions

This section contains the following topics:

Normalization (see page 67)
Overview of the Normal Forms (see page 68)

Common Design Problems (see page 69)
Unification (see page 79)
How Much Normalization Is Enough (see page 80)
Support for Normalization (see page 82)

Normalization

Normalization, in relational database design, is the process by which data in a relational
construct is organized to minimize redundancy and non-relational constructs. Following
the rules for normalization, you can control and eliminate data redundancy by removing

all model structures that provide multiple ways to know the same fact.

The goal of normalization is to ensure that there is only one way to know a fact. A useful
slogan summarizing this goal is:

ONE FACT IN ONE PLACE!

Overview of the Normal Forms

68 Data Modeling Overview Guide

Overview of the Normal Forms

The following are the formal definitions for the most common normal forms.

Functional Dependence (FD)

Given an entity E, attribute B of E is functionally dependent on attribute A of E if
and only if each value of A in E has associated with it precisely one value of B in E

(at any one time). In other words, A uniquely determines B.

Full Functional Dependence

Given an entity E, an attribute B of E is fully functionally dependent on a set of
attributes A of E if and only if B is functionally dependent on A and not functionally

dependent on any proper subset of A.

First Normal Form (1NF)

An entity E is in 1NF if and only if all underlying values contain only atomic values.

Any repeating groups (that might be found in legacy COBOL data structures, for
example) must be eliminated.

Second normal Form (2NF)

An entity E is in 2NF if it is in 1NF and every non-key attribute is fully dependent on

the primary key. In other words, there are no partial key dependencies -dependence
is on the entire key K of E and not on a proper subset of K.

Third Normal Form (3NF)

An entity E is in 3NF if it is in 2NF and no non-key attribute of E is dependent on
another non-key attribute. There are several equivalent ways to express 3NF.
Another way is: An entity E is in 3NF if it is in 2NF and every non-key attribute is
non-transitively dependent on the primary key. A final way is: An entity E is in 3NF if

every attribute in E carries a fact about all of E (2NF) and only about E (as
represented by the entity's entire key and only by that key). One way to remember
how to implement 3NF is using the following quip: “Each attribute relies on the

key, the whole key, and nothing but the key, so help me Codd!”

Beyond 3NF lie three more normal forms, Boyce-Codd, Fourth, and Fifth. In practice,
third normal form is the standard. At the level of the physical database design, choices
are usually made to denormalize a structure in favor of performance for a certain set of

transactions. This may introduce redundancy in the structure, but it is often worth it.

Common Design Problems

Chapter 7: Normalization Problems and Solutions 69

Common Design Problems

Many common design problems are a result of violating one of the normal forms.
Common problems include:

■ Repeating data groups

■ Multiple use of the same attribute

■ Multiple occurrences of the same fact

■ Conflicting facts

■ Derived attributes

■ Missing information

When you work on eliminating design problems, the use of sample instance data can be
invaluable in discovering many normalization errors.

Repeating Data Groups

Repeating data groups can be defined as l ists, repeating elements, or internal structures

inside an attribute. This structure, although common in legacy data structures, violates
first normal form and must be eliminated in an RDBMS model. An RDBMS cannot handle
variable-length repeating fields because it offers no ability to subscript through arrays of

this type. The entity below contains a repeating data group, “children's -names.”
Repeating data groups violate first normal form, which basically states that an entity is
in first normal form if each of its attributes has a single meaning and not more than one
value for each instance.

Repeating data groups, as shown below, present problems when defining a database to
contain the actual data. For example, after designing the EMPLOYEE entity, you are
faced with the questions, “How many children's names do you need to record?” “How

much space should you leave in each row in the database for the names?” and “What
will you do if you have more names than remaining space?”

Common Design Problems

70 Data Modeling Overview Guide

The following sample instance table might clarify the problem:

EMPLOYEE

emp-id emp-name emp-address children's-names

E1 Tom Berkeley Jane

E2 Don Berkeley Tom, Dick, Donna

E3 Bob Princeton -

E4 John New York Lisa

E5 Carol Berkeley -

In order to fix the design, it is necessary to somehow remove the list of children's names

from the EMPLOYEE entity. One way to do this is to add a CHILD table to contain the
information about employee's children, as follows:

Once that is done, you can represent the names of the children as single entries in the
CHILD table. In terms of the physical record structure for employee, this can resolve
some of your questions about space allocation, and prevent wasting space in the record
structure for employees who have no children or, conversely, deciding how much space

to allocate for employees with families.

The following tables are the sample instance tables for the EMPLOYEE-CHILD model:

EMPLOYEE

emp-id emp-name emp-address

E1 Tom Berkeley

E2 Don Berkeley

E3 Bob Princeton

E4 Carol Berkeley

Common Design Problems

Chapter 7: Normalization Problems and Solutions 71

CHILD

emp-id child-id child-name

E2 C1 Tom

E2 C2 Dick

E2 C3 Donna

E4 C1 Lisa

This change makes the first step toward a normalized model; conversion to first normal
form. Both entities now contain only fixed-length fields, which are easy to understand
and program.

Multiple Use of the Same Attribute

It is also a problem when a single attribute can represent one of two facts, and there is
no way to understand which fact it represents. For example, the EMPLOYEE entity
contains the attribute “start-or-termination-date” where you can record this

information for an employee as follows:

The following sample instance table shows start-or-termination date:

EMPLOYEE

emp-id emp-name emp-address start-or-termination-date

E1 Tom Berkeley January 10, 2004

E2 Don Berkeley May 22, 2002

E3 Bob Princeton March 15, 2003

E4 John New York September 30, 2003

E5 Carol Berkeley April 22, 2000

E6 George Pittsburgh October 15, 2002

Common Design Problems

72 Data Modeling Overview Guide

The problem in the current design is that there is no way to record both a start date, the
date that the EMPLOYEE started work, and a termination date, the date on which an

EMPLOYEE left the company, in situations where both dates are known. This is because
a single attribute represents two different facts. This is also a common structure in
legacy COBOL systems, but one that often resulted in maintenance nightmares and

misinterpretation of information.

The solution is to allow separate attributes to carry separate facts. The following figure
is an attempt to correct the problem. It is sti l l not quite right. To know the start date for
an employee, for example, you have to derive what kind of date it i s from the

“date-type” attribute. While this may be efficient in terms of physical database space
conservation, it creates confusion with query logic.

In fact, this solution actually creates a different type of normalization error, since
“date-type” does not depend on “employee-id” for its existence. This is also poor design

since it solves a technical problem, but does not solve the underlying business
problem-how to store two facts about an employee.

When you analyze the data, you can quickly determine that it is a better solution to let
each attribute carry a separate fact, as in the following figure:

The following table is a sample instance table showing “start-date” and
“termination-date”:

EMPLOYEE

emp-id emp-name emp-address start-date termination-date

E1 Tom Berkeley January 10, 2004 -

E2 Don Berkeley May 22, 2002 -

Common Design Problems

Chapter 7: Normalization Problems and Solutions 73

E3 Bob Princeton March 15, 2003 -

E4 John New York September 30, 2003 -

E5 Carol Berkeley April 22, 2000 -

E6 George Pittsburgh October 15, 2002 Nov 30, 2003

Each of the two previous situations contained a first normal form error. By changing the

structures, an attribute now appears only once in the entity and carries only a single
fact. If you make sure that all the entity and attribute names are singular and that no
attribute can carry multiple facts, you have taken a large step toward assuring that a
model is in first normal form.

Multiple Occurrences of the Same Fact

One of the goals of a relational database is to maximize data integrity. To do so, it is
important to represent each fact in the database once and only once, otherwise errors
can begin to enter into the data. The only exception to this rule (one fact in one place) is

in the case of key attributes, which can appear multiple times in a database. The
integrity of keys, however, is managed using referential integrity.

Multiple occurrences of the same fact often point to a flaw in the original database
design. In the following figure, you can see that including “employee-address” in the
CHILD entity has introduced an error in the database design. If an employee has multiple

children, the address must be maintained separately for each child.

“employee-address” is information about the EMPLOYEE, not information about the

CHILD. In fact, this model violates second normal form, which states that each fact must
depend on the entire key of the entity in order to belong to the entity. The example
above is not in second normal form because “employee-address” does not depend on
the entire key of CHILD, only on the “employee-id” portion, creating a partial key

dependency. If you place “employee-address” back with EMPLOYEE, you can ensure
that the model is in at least second normal form.

Common Design Problems

74 Data Modeling Overview Guide

Conflicting Facts

Conflicting facts can occur for a variety of reasons, including violation of first, second, or
third normal forms. An example of conflicting facts occurring through a violation of
second normal form is shown in the following figure:

The following two tables are sample instance tables showing “emp-spouse-address”:

EMPLOYEE

emp-id emp-name emp-address

E1 Tom Berkeley

E2 Don Berkeley

E3 Bob Princeton

E4 Carol Berkeley

CHILD

emp-id child-id child-name emp-spouse-address

E1 C1 Jane Berkeley

E2 C1 Tom Berkeley

E2 C2 Dick Berkeley

E2 C3 Donna Cleveland

E4 C1 Lisa New York

Common Design Problems

Chapter 7: Normalization Problems and Solutions 75

The attribute named “emp-spouse-address” is included in CHILD, but this design is a
second normal form error. The instance data highlights the error. As you can see, Don is

the parent of Tom, Dick, and Donna but the instance data shows two different
addresses recorded for Don's spouse. Perhaps Don has had two spouses (one in
Berkeley, and one in Cleveland), or Donna has a different mother from Tom and Dick. Or

perhaps Don has one spouse with addresses in both Berkeley and Cleveland. Which is
the correct answer? There is no way to know from the model as it stands. Business users
are the only source that can eliminate this type of semantic probl em, so analysts need
to ask the right questions about the business to uncover the correct design.

The problem in the example is that “emp-spouse-address”is a fact about the
EMPLOYEE's SPOUSE, not about the CHILD. If you leave the structure the way it is now,
then every time Don's spouse changes address (presumably along with Don), you will
have to update that fact in multiple places; once in each CHILD instance where Don is

the parent. If you have to update multiple places, you might miss some and get error s.

Once it is recognized that “emp-spouse-address” is a fact not about a child, but about a
spouse, you can correct the problem. To capture this information, you can add a
SPOUSE entity to the model, as shown in the following figure:

The following three tables are sample instance tables reflecting the SPOUSE Entity:

EMPLOYEE

emp-id emp-name emp-address

E1 Tom Berkeley

E2 Don Berkeley

E3 Bob Princeton

E4 Carol Berkeley

Common Design Problems

76 Data Modeling Overview Guide

CHILD

emp-id child-id child-name

E1 C1 Jane

E2 C1 Tom

E2 C2 Dick

E2 C3 Donna

E4 C1 Lisa

SPOUSE

emp-id spouse-id spouse-address current-spouse

E2 S1 Berkeley Y

E2 S2 Cleveland N

E3 S1 Princeton Y

E4 S1 New York Y

E5 S1 Berkeley Y

In breaking out SPOUSE into a separate entity, you can see that the data for the address
of Don's spouses is correct. Don has two spouses, one current and one former.

By making sure that every attribute in an entity carries a fact about that entity, you can
generally be sure that a model is in at least second normal form. Further transforming a
model into third normal form generally reduces the likelihood that the database will
become corrupt; in other words, that it will contain conflicting information or that

required information will be missing.

Derived Attributes

Another example of conflicting facts occurs when third normal form is violated. For
example, if you included both a “birth-date” and an “age” attribute as non-key

attributes in the CHILD entity, you violate third normal form. This is because “age” is
functionally dependent on “birth-date.” By knowing “birth-date” and the date today,
you can derive the “age” of the CHILD.

Derived attributes are those that may be computed from other attributes, such as
totals, and therefore you do not need to directly store them. To be accurate, derived
attributes need to be updated every time their derivation sources are updated. This
creates a large overhead in an application that does batch loads or updates, for

example, and puts the responsibility on application designers and coders to ensure that
the updates to derived facts are performed.

Common Design Problems

Chapter 7: Normalization Problems and Solutions 77

A goal of normalization is to ensure that there is only one way to know each fact
recorded in the database. If you know the value of a derived attribute, and you know

the algorithm by which it is derived and the values of the attributes used by the
algorithm, then there are two ways to know the fact (look at the value of the derived
attribute, or derive it by manual calculation). If you can get an answer two different

ways, it is possible that the two answers will be different.

For example, you can choose to record both the “birth-date” and the “age”for CHILD.
And suppose that the “age” attribute is only changed in the database during an end of
month maintenance job. Then, when you ask the question, “How old is this CHILD?” you

can directly access “age” and get an answer, or you can subtract “birth-date” from
“today's-date.” If you did the subtraction, you would always get the right answer. If
“age” was not recently updated, it might give you the wrong answer, and there would
always be the potential for conflicting answers.

There are situations, where it makes sense to record derived data in the model,

particularly if the data is expensive to compute. It can also be very useful in discussing
the model with those in the business. Although the theory of modeli ng says that you
should never include derived data or do so only sparingly, break the rules when you

must and at least record the fact that the attribute is derived and state the derivation
algorithm.

Missing Information

Missing information in a model can sometimes result from efforts to normalize the data.

In the example, adding the SPOUSE entity to the EMPLOYEE-CHILD model improves the
design, but destroys the implicit relationship between the CHILD entity and the SPOUSE
address. It is possible that the reason that “emp-spouse-address” was stored in the
CHILD entity in the first place was to represent the address of the other parent of the

child (which was assumed to be the spouse). If you need to know the other parent of
each of the children, then you must add this information to the CHILD entity.

Common Design Problems

78 Data Modeling Overview Guide

The following three tables are sample instance tables for EMPLOYEE, CHILD, and
SPOUSE:

EMPLOYEE

emp-id emp-name emp-address

E1 Tom Berkeley

E2 Don Berkeley

E3 Bob Princeton

E4 Carol Berkeley

CHILD

emp-id child-id child-name other-parent-id

E1 C1 Jane -

E2 C1 Tom S1

E2 C2 Dick S1

E2 C3 Donna S2

E4 C1 Lisa S1

SPOUSE

emp-id spouse-id spouse-address current-or-not

E2 S1 Berkeley Y

E2 S2 Cleveland N

E3 S1 Princeton Y

E4 S1 New York Y

E5 S1 Berkeley Y

However, the normalization of this model is not complete. In order to complete it, you

must ensure that you can represent all possible relationships between employees and
children, including those where both parents are employees.

Unification

Chapter 7: Normalization Problems and Solutions 79

Unification

In the following example, the “employee-id” attribute migrates to the CHILD entity
through two relationships: one with EMPLOYEE and the other with SPOUSE. You might
expect that the foreign key attribute would appear twice in the CHILD entity as a result.
Since the attribute “employee-id” was already present in the key area of CHILD, it is not

repeated in the entity even though it is part of the key of SPOUSE.

This combining of two identical foreign key attributes migrated from the same base
attribute through two or more relationships is called unification. In the example,
“employee-id”was part of the primary key of CHILD (contributed by the “has”

relationship from EMPLOYEE) and was also a non-key attribute of CHILD (contributed by
the “has” relationship from SPOUSE). Since both foreign key attributes are the
identifiers of the same EMPLOYEE, it is better that the attribute appears only once.

Unification is implemented automatically when this situation occurs.

How Much Normalization Is Enough

80 Data Modeling Overview Guide

The rules used to implement unification include:

■ If the same foreign key is contributed to an entity more than once, without the

assignment of rolenames, then all occurrences unify.

■ If the occurrences of the foreign key are given different rolenames, then unification
does not occur.

■ If different foreign keys are assigned the same rolename, and these foreign keys are
rolenamed back to the same base attribute, then unification occurs. If they are not
rolenamed back to the same base attribute, there is an error in the diagram.

■ If any of the foreign keys that unify are part of the primary key of the enti ty, then

the unified attribute remains as part of the primary key.

■ If none of the foreign keys that unify are part of the primary key, then the unified
attribute is not part of the primary key.

Accordingly, you can override the unification of foreign keys, when necessary, by

assigning rolenames. If you want the same foreign key to appear two or more times in a
child entity, you can add a rolename to each foreign key attribute.

How Much Normalization Is Enough

From a formal normalization perspective (what an algorithm would find solely from the

shape of the model, without understanding the meanings of the entities and attributes)
there is nothing wrong with the EMPLOYEE-CHILD-SPOUSE model. However, just
because it is normalized does not mean that the model is complete or correct. It sti l l
may not be able to store all of the information that is needed or it may store the

information inefficiently. With experience, you can learn to detect and remove
additional design flaws even after the pure normalization is finished.

Using the following EMPLOYEE-CHILD-SPOUSE model example, you see that there is no
way of recording a CHILD whose parents are both EMPLOYEEs. Therefore, you can make

additional changes to try to accommodate this type of data.

How Much Normalization Is Enough

Chapter 7: Normalization Problems and Solutions 81

If you noticed that EMPLOYEE, SPOUSE, and CHILD all represent instances of people, you

may want to try to combine the information into a single table that represents facts
about people and one that represents facts about relationships. To fix the model, you
can eliminate CHILD and SPOUSE, replacing them with PERSON and

PERSON-ASSOCIATION. This lets you record parentage and marriage through the
relationships between two PERSONs captured in the PERSON-ASSOCIATION entity.

In this structure, you can finally record any number of relationships between two
PERSONs, as well as a number of relationships you could not previously record in the

first model, such as adoption. The new structure automatically covers it. To represent
adoption you can add a new value to the “person-association-type” validation rule to
represent adopted parentage. You can also add legal guardian, significant other, or
other relationships between two PERSONs later, if needed.

EMPLOYEE remains an independent entity, since the business chooses to identify
EMPLOYEEs differently from PERSONs. However, EMPLOYEE inherits the properties of
PERSON by virtue of the is a relationship back to PERSON. Notice the Z on that

relationship and the absence of a diamond. This is a one-to-zero or one relationship that
can sometimes be used in place of a subtype when the subtype entities require different
keys. In this example, a PERSON either is an EMPLOYEE or is not an EMPLOYEE.

Support for Normalization

82 Data Modeling Overview Guide

If you wanted to use the same key for both PERSON and EMPLOYEE, you can encase the
EMPLOYEE entity into PERSON and allowed its attributes to be NULL whenever the

PERSON is not an EMPLOYEE. You stil l can specify that the business wanted to look up
employees by a separate identifier, but the business statements woul d be a bit
different. This structure is shown in the following figure:

This means that a model may normalize, but stil l may not be a correct representation of
the business. Formal normalization is important. Verifying that the model means
something, perhaps with sets of sample instance tables as done here, is no less

important.

Support for Normalization

Support for normalization of data models is supported, but does not currently contain a
full normalization algorithm. If you have not used a real time modeling tool before, you
will find the standard modeling features quite helpful. They will prevent you from

making many normalization errors.

First Normal Form Support

In a model, each entity or attribute is identified by its name. Any name for a n object is
accepted, with the following exceptions:

■ A second use of an entity name (depending on your preference for unique names) is
flagged.

■ A second use of an attribute name is flagged, unless that name is a rolename. When

rolenames are assigned, the same name for an attribute may be used in different
entities.

■ You cannot bring a foreign key into an entity more than once without unifying the
like columns.

Support for Normalization

Chapter 7: Normalization Problems and Solutions 83

By preventing multiple uses of the same name, you are prompted to put each fact in
exactly one place. However, there may stil l be second normal form errors if you place an

attribute incorrectly, but no algorithm would find that without more information tha n is
present in a model.

In a data model, CA ERwin DM cannot know that a name you assign to an attribute can

represent a l ist of things. In the following example, CA ERwin DM accepts
“children's-names” as an attribute name. So CA ERwin DM does not directly guarantee
that every model is in first normal form.

However, the DBMS schema function does not support a data type of list. Since the
schema is a representation of the database in a physical relational system, first normal
form errors are also prevented at this level.

Second and Third Normal Form Support

CA ERwin DM does not currently manage functional dependencies, but it can help to
prevent second and third normal form errors. For example, if you reconstruct the
examples below, you will find that once “spouse-address” is defined as an attribute of
SPOUSE, you cannot also define it as an attribute of CHILD. (Again, depending on your

preference for unique names.)

Support for Normalization

84 Data Modeling Overview Guide

By preventing the multiple occurrence of foreign keys without rolenames, you are

reminded to think about what the structure represents. If the same foreign key occurs
twice in the same entity, there is a business question to ask: Are we recording the keys
of two separate instances, or do both of the keys represent the same insta nce?

When the foreign keys represent different instances, separate rolenames are needed. If
the two foreign keys represent the same instance, then it is very l ikely that there is a

normalization error somewhere. A foreign key appearing twice in an entity without a
rolename means that there is a redundant relationship structure in the model. When
two foreign keys are assigned the same rolename, unificati on occurs.

Chapter 8: Physical Models 85

Chapter 8: Physical Models

This section contains the following topics:

Objective (see page 85)
Support for the Roles of the Physical Model (see page 86)
Denormalization (see page 87)

Objective

The objective of a physical model is to provide a database administrator with sufficient
information to create an efficient physical database. The physical model also provides a
context for the definition and recording (in the data dictionary) of the data elements

that form the database, and assists the application team in choosing a physical structure
for the programs that will access the data. To ensure that all information system needs
are met, physical models are often developed jointly by a team repres enting the data
administration, database administration, and application development areas.

When it is appropriate for the development effort, the model can also provide the basis

for comparing the physical database design against the original business information
requirements to:

■ Demonstrate that the physical database design adequately supports those
requirements.

■ Document physical design choices and their implications, such as what is satisfied,
and what is not.

■ Identify database extensibil ity capabilities and constraints.

Support for the Roles of the Phys ical Model

86 Data Modeling Overview Guide

Support for the Roles of the Physical Model

Support is provided for both roles of a physical model:

■ Generating the physical database

■ Documenting physical design against the business requirements

For example, in a logical/physical model, you can create a physical model from an ERD,

key-based, or fully attributed model simply by changing the view of the model from
Logical Model to Physical Model. Each option in the logical model has a corresponding
option in the physical model. Therefore, each entity becomes a relational table,
attributes become columns, and keys become indices.

Once the physical model is created, you can generate all model objects in the correct
syntax for the selected target server directly to the catalog of the target server, or
indirectly as a schema DDL script fi le.

Summary of Logical and Physical Model Components

The following table summarizes the relationship between objects in a logical and a
physical model:

Logical Model Physical Model

Entity Table

Dependent entity Foreign Key is part of the child table's
Primary Key

Independent entity Parent table or, if it is a child table,
Foreign Key is NOT part of the child table's
Primary Key

Attribute Column

Logical datatype (text, number, datetime,
blob)

Physical datatype (valid example varies
depending on the target server selected)

Domain (logical) Domain (physical)

Primary key Primary key, Primary Key Index

Foreign key Foreign key, Foreign Key Index

Alternate key (AK) Alternate Key Index-a unique, non-primary

index

Denormalization

Chapter 8: Physical Models 87

Logical Model Physical Model

Inversion entry (IE) Inversion entry Index-a non-unique index

created to search table information by a
non-unique value, such as customer last
name.

Key group Index

Business rule Trigger or stored procedure

Validation rule Constraint

Relationship Relationship implemented using Foreign

Keys

Identifying relationship Foreign Key is part of the child table's
Primary Key (above the line)

Non-identifying relationship Foreign Key is NOT part of the child table's

Primary Key (below the line)

Subtype relationship Denormalized tables

Many-to-many relationship Associative table

Referential Integrity relationship (Cascade,
Restrict, Set Null, Set Default)

INSERT, UPDATE, and DELETE Triggers

Cardinality relationship INSERT, UPDATE, and DELETE Triggers

N/A View or view relationship

N/A Prescript or postscript

Referential integrity is a part of the logical model, since the decision about how to
maintain a relationship is a business decision. Referential integrity is also a physical

model component, since triggers or declarative statements appear in the schema.
Referential integrity is supported as a part of both the logical and physical models.

Denormalization

You can also denormalize the structure of the logical model , or allow data redundancy in
a table to improve query performance so that you can build a related physical model

that is designed effectively for the target RDBMS. Features supporting denormalization
include:

■ Logical only properties for entities, attributes, key groups, and domains. You can

mark any item in the logical model logical only so that it appears in the logical
model, but does not appear in the physical model. For example, you can use the
logical only settings to denormalize subtype relationships or support partial key
migration in the physical model.

Denormalization

88 Data Modeling Overview Guide

■ Physical only properties for tables, columns, indexes, and domains. You can mark
any item in the physical model physical only so that it a ppears in the physical model

only. This setting also supports denormalization of the physical model since it
enables the modeler to include tables, columns, and indexes in the physical model
that directly support physical implementation requirements.

■ Resolution of many-to-many relationships in a physical model. Support for resolving
many-to-many relationships is provided in both the logical and physical models. If
you resolve the many-to-many relationship in the logical model, the associative
entity is created and lets you add additional attributes. If you choose to keep the

many-to-many relationship in the logical model, you can stil l resolve the
relationship in the physical model. The link is maintained between the original
logical design and the new physi cal design, so the origin of the associative table is
documented in the model.

Appendix A: Dependent Entity Types 89

Appendix A: Dependent Entity Types

Classification of Dependent Entities

The following table l ists the types of dependent entities that may appear in an IDEF1X
diagram:

Dependent Entity Type Description Example

Characteristic A characteristic entity represents a group of
attributes that occur multiple times for an

entity, and is not directly identified by any
other entity. In the example, HOBBY is a
characteristic of PERSON.

Associative or Designative Associative and designative entities record
multiple relationships between two or more
entities. If the entity carries only the

relationship information, it is termed a
designative entity. If it also carries attributes
that further describe the relationship, it is
called an associative entity. In the example,

ADDRESS-USAGE is an associative or
designative entity.

Subtype Subtype entities are the dependent entities
in a subtype relationship. In the example,

CHECKING-ACCOUNT, SAVINGS-ACCOUNT,
and LOAN-ACCOUNT are subtype entities.

Glossary 91

Glossary

alternate key
An attribute or attributes that uniquely identify an instance of an entity.
If more than one attribute or group of attributes uniquely i dentify an instance of an
entity, the alternate keys are those attributes or groups of attributes not selected as the

primary key. A unique index for each alternate key is generated.

attribute

Represents a type of characteristic or property associated with a set of real or abstract
things (people, places, events, and so on).

basename
The original name of a rolenamed foreign key.

binary relationship

A relationship where exactly one instance of the parent is related to zero, one, or more
instances of a child. In IDEF1X, identifying, non-identifying, and subtype relationships
are all binary relationships.

BLOB
A dbspace that is reserved for storage of the byte and text data that makes up binary

large objects, or BLOBs, stored in table columns. The BLOB dbspace can hold images,
audio, video, long text blocks, or any digitized information.

cardinality
The ratio of instances of a parent to instances of a child. In IDEF1X, the cardinality of
binary relationships is 1:n, where n can be one of the following:

■ Zero, one, or more (signified by a blank space)

■ One or more (signified by the letter P)

■ Zero or one (signified by the letter Z)

■ Exactly n (where n is some number)

complete subtype cluster

If the subtype cluster includes all of the possible subtypes (every instance of the generic
parent is associated with one subtype), then the subtype c luster is complete. For
example, every ACCOUNT is either a checking, savings, or loan account and therefore
the subtype cluster of CHECKING-ACCOUNT, SAVINGS-ACCOUNT, or LOAN-ACCOUNT is

a complete subtype cluster.

dependent entity
An entity whose instances cannot be uniquely identified without determining its
relationship to another entity or entities.

Classification of Dependent Entities

92 Data Modeling Overview Guide

denormalization
To allow data redundancy in a table to improve query performance.

discriminator

The value of an attribute in an instance of the generic parent determines to which of the
possible subtypes that instance belongs. This attribute is known as the discriminator. For
example, the value in the attribute “account-type” in an instance of ACCOUNT
determines to which particular subtype (CHECKING-ACCOUNT, SAVINGS-ACCOUNT, or

LOAN-ACCOUNT) that instance belongs.

domain
A group of predefined logical and physical property characteristics that can be saved,
selected, and then attached to attributes and columns.

entity
An entity represents a set of real or abstract things (people, places, events, and so on)

that have common attributes or characteristics. Entities can be either independent or
dependent.

foreign key
An attribute that has migrated through a relationship from a parent entity to a child
entity. A foreign key represents a secondary reference to a single set of values; the

primary reference is the owned attribute.

identifying relationship
A relationship where an instance of the child entity is identified through its association
with a parent entity. The primary key attributes of the parent entity become primary
key attributes of the child.

incomplete subtype cluster

If the subtype cluster does not include all of the possible subtypes (every instance of the
generic parent is not associated with one subtype), then the subtype cluster is
incomplete. For example, if some employees are commissioned, a subtype cluster of
SALARIED-EMPLOYEE and PART-TIME EMPLOYEE is incomplete.

independent entity

An entity whose instances can be uniquely identified without determining its
relationship to another entity.

inversion entry
An attribute or attributes that do not uniquely identify an instance of an entity, but are
often used to access instances of entities. A non-unique index for each inversion entry is

generated.

logical model
The data modeling level where you create a conceptual model that contains objects
such as entities, attributes, and key groups.

Classification of Dependent Entities

Glossary 93

logical/physical model
A model type created where the logical and physical models are automatically l inked.

non-key attribute

Any attribute that is not part of the entity’s primary key. Non-key attributes can be part
of an inversion entry or alternate key, and can also be foreign keys.

non-identifying relationship
A relationship where an instance of the child entity is not identified through its
association with a parent entity. The primary key attributes of the parent entity become

non-key attributes of the child.

non-specific relationship
Both parent-child connection and subtype relationships are considered specific
relationships since they define precisely how instances of one entity relate to instances
of another. However, in the initial development of a model, it is often helpful to identify

non-specific relationships between two entities. A non-specific relationship, also
referred to as a many-to-many relationship, is an association between two entities
where each instance of the first entity is associated with zero, one, or many instances of
the second entity and each instance of the second entity is associated with zero, one, or

many instances of the first entity.

normalization
The process by which data in a relational construct is organized to minimize redundancy
and non-relational constructs.

physical model
The data modeling level where you add database and database management system

(DBMS) specific modeling information such as tables, columns, and datatypes.

primary key
An attribute or attributes that uniquely identify an instance of an entity. If more than
one attribute or group of attributes can uniquely identify each instance, the primary key
is chosen from this l ist of candidates based on its perceived value to the business as an

identifier. Ideally, primary keys should not change over time and should be as small as
possible. A unique index for each primary key is generated.

referential integrity
The assertion that the foreign key values in an instance of a child entity have
corresponding values in a parent entity.

rolename

A new name for a foreign key. A rolename is used to indicate that the set of values of
the foreign key is a subset of the set of values of the attribute in the parent, and
performs a specific function (or role) in the entity.

Classification of Dependent Entities

94 Data Modeling Overview Guide

schema
The structure of a database. Usually refers to the DDL (data definition language) script

fi le. DDL consists of CREATE TABLE, CREATE INDEX, and other statements.

specific relationship
A specific relationship is an association between entities where each instance of the
parent entity is associated with zero, one, or many instances of the child entity, and
each instance of the child entity is associated with zero or one instance of the parent

entity.

subtype entity
There are often entities which are specific types of other entities. For example, a
SALARIED EMPLOYEE is a specific type of EMPLOYEE. Subtype entities are useful for
storing information that only applies to a specific subtype. They are also useful for

expressing relationships that are only valid for that specific subtype, such as the fact
that a SALARIED EMPLOYEE qualifies for a certain BENEFIT, while a
PART-TIME-EMPLOYEE does not. In IDEF1X, subtypes within a subtype cluster are

mutually exclusive.

subtype relationship

A subtype relationship (also known as a categorization relationship) is a relationship
between a subtype entity and its generic parent. A subtype relationship always relates
one instance of a generic parent with zero or one instance of the subtype.

Index 95

Index

A

alias, entity names • 38
alternate key • 30

associative entity • 55
definition of • 89

attribute

avoiding multiple occurrences • 73
avoiding multiple usages • 71
avoiding synonyms and homonyms • 38
definition • 41

definition of • 21
definition using business terms • 41
derived • 76
in an ERD • 20

name • 37
rolename • 35
specifying a domain of values • 41

specifying a rolename • 43
validation rule in definition • 41

B

base attribute, definition of • 43
binary relationship, definition of • 57
business

glossary
creating • 41

rule
capturing in a definition • 44

term
organizing • 41

C

CA ERwin DM
diagram components • 20
model advantages • 9

candidate key, definition of • 28
cardinality

definition • 45
in identifying relationships • 45

in non-identifying relationships • 47
notation in IDEF1X and IE • 45

cascade

definition of • 49
example • 53

characteristic entity, definition of • 89
child entity • 22
complete subtype relationships • 63
components, in an ERD • 20

D

data analyst, role of • 13

data modeler, role of • 13
data modeling

assertion examples • 25
benefits • 9

definition of • 11
methodologies • 11
role of data analyst • 13
role of data modeler • 13

role of facil itator • 13
role of subject matter expert • 13
role of the manager • 13

sample IDEF1X methodology • 14
sessions • 12
use of verb phrases • 24

definition

attribute • 41
capturing business rules • 44
entity • 39

rolename • 43
denormalization

in the physical model • 87
dependency

existence • 32
identification • 32

dependent entity • 32

types of • 89
derived attribute

definition of • 76
when to use • 76

designative entity, definition of • 89
discriminator, in subtype relationships • 61
domain, specifying valid attribute values • 41

E

entity
assigning a definition • 39

associative • 55, 89
avoiding circular definitions • 40

96 Data Modeling Overview Guide

avoiding synonyms and homonyms • 38
characteristic • 89

child • 22
definition conventions • 39
definition description • 39

definition of • 21
definition using business terms • 41
dependent • 32
designative • 89

in an ERD • 20
independent • 32
name • 37
parent • 22

subtype • 61, 89
supertype • 61

entity relationship diagram

creating • 20
definition of • 16
objective • 19
overview • 19

sample • 20
subject areas • 19

ERD • 16

exclusive subtype relationships • 64
existence dependency • 32

F

facil itator, role of • 13
first normal form • 69, 71
foreign key

assigning referential integrity • 49
unification • 43

foreign key attribute, rolename • 35
fully-attributed model • 14

definition of • 16

G

generalization

definition of category • 61
definition of hierarchy • 61

I

identification dependency • 32
identifying relationship • 33

cardinality • 45

inclusive subtype relationships • 64
incomplete subtype relationships • 63
independent entity • 32

inheritance hierarchy, definition of • 61
instance, definition of • 21

inversion entry • 31

K

key
alternate key • 30
inversion entry • 31
primary • 28

selection example • 28
surrogate • 28

key attributes • 28
key-based model

definition of • 16, 27
objective • 27

L

logical model, definition of • 16
logical only property • 87

M

manager, role of • 13
many-to-many • 23, 55

eliminating • 55

migrating, rolename • 35

N

naming
attributes • 37
entities • 37

n-ary relationship • 55

definition of • 57
non-identifying relationship • 34

cardinality • 47

non-key attribute • 28
normal forms

summary of six forms • 68
normalization

avoiding design problems • 69, 71, 73, 74, 76
CA ERwin DM support • 82
completing • 80

denormalizing in the physical model • 87
first normal form • 69, 71
second normal form • 73
third normal form • 74, 76

Index 97

O

one-to-many • 22

P

parent entity • 22

physical model
creating • 85
definition • 17

physical only property • 87
primary key • 28

choosing • 28

R

recursive relationship • 55
definition of • 59

referential integrity • 49
cascade • 49
definition of • 49
example • 53, 54

notation in a CA ERwin DM diagram • 51
restrict • 49
set default • 49
set null • 49

relationship
and dependent entities • 32
and independent entities • 32

complete subtype • 63
definition of • 22
enforcing cardinality • 45
exclusive subtype • 64

identifying • 33
in an ERD • 20
inclusive subtype • 64

incomplete subtype • 63
mandatory and optional • 47
many-to-many • 23, 55
n-ary • 55, 57

non-identifying • 34
one-to-many • 22
reading from child to parent • 24

reading from parent to child • 24
recursive • 55, 59
referential integrity • 49
subtype • 55

subtype (category) • 61
subtype notation • 65
verb phrase • 22

repeating data groups • 69
restrict

definition of • 49
example • 53

rolename

assigning a definition • 43
definition • 35
migrating • 35

S

second normal form • 73
session

planning • 12

roles • 13
set default, definition of • 49
set null

definition of • 49
example • 54

subject matter expert, role of • 13
subtype entity, definition of • 89

subtype relationship • 55
complete • 63
creating • 66

definition • 61
discriminator • 61
exclusive • 64
inclusive • 64

incomplete • 63
notation • 65
supertypes • 61

supertypes • 61
surrogate key, assigning • 28

T

third normal form • 74, 76
fully-attributed model • 16
key-based model • 16

transformation model • 14

creating • 85
definition of • 17

U

unification
avoiding normalization problems • 79
foreign key rolenaming • 43

V

validation rule, in attribute definitions • 41

98 Data Modeling Overview Guide

verb phrase • 22
example • 22

in a data model • 24

	CA ERwin Data Modeler Data Modeling Overview Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction
	Benefits of Data Modeling
	Methods
	Typographical Conventions

	2: Information Systems, Databases, and Models
	Data Modeling
	Data Modeling Sessions
	Session Roles

	Sample IDEF1X Modeling Methodology
	Modeling Architecture
	Logical Models
	Entity Relationship Diagram
	Key-Based Model
	Fully-Attributed Model

	Physical Models
	Transformation Model
	DBMS Model

	3: Logical Models
	Constructing a Logical Model
	Entity Relationship Diagram
	Entities and Attributes Defined
	Logical Relationships
	Many-to-Many Relationships

	Logical Model Design Validation
	Data Model Example

	4: The Key-Based Data Model
	Key Types
	Entity and Non-Key Areas

	Primary Key Selection
	Alternate Key Attributes
	Inversion Entry Attributes
	Relationships and Foreign Key Attributes
	Dependent and Independent Entities
	Identifying Relationships
	Nonidentifying Relationships
	Rolenames

	5: Naming and Defining Entities and Attributes
	Entity and Attribute Names
	Synonyms, Homonyms, and Aliases

	Entity Definitions
	Descriptions
	Business Examples
	Comments

	Definition References and Circularity
	Business Glossary Construction

	Attribute Definitions
	Validation Rules

	Rolenames
	Definitions and Business Rules

	6: Relationships
	Relationship Cardinality
	Cardinality in Nonidentifying Relationships

	Referential Integrity
	Referential Integrity Options
	RI, Cardinality, and Identifying Relationships
	RI, Cardinality, and Non-Identifying Relationships

	Additional Relationship Types
	Many-to-Many Relationships
	N-ary Relationships
	Recursive Relationships
	Subtype Relationships
	Complete Compared to Incomplete Subtype Structures
	Inclusive and Exclusive Relationships
	IDEF1X and IE Subtype Notation
	When to Create a Subtype Relationship

	7: Normalization Problems and Solutions
	Normalization
	Overview of the Normal Forms
	Common Design Problems
	Repeating Data Groups
	Multiple Use of the Same Attribute
	Multiple Occurrences of the Same Fact
	Conflicting Facts
	Derived Attributes
	Missing Information

	Unification
	How Much Normalization Is Enough
	Support for Normalization
	First Normal Form Support
	Second and Third Normal Form Support

	8: Physical Models
	Objective
	Support for the Roles of the Physical Model
	Summary of Logical and Physical Model Components

	Denormalization

	A: Dependent Entity Types
	Classification of Dependent Entities

	Glossary
	Index

