CA ERwin® Data Modeler

Data Modeling Overview Guide
Release 9.64.01

This Documentation, which includes embedded help systems and electronically distributed materials (hereinafter referred to as
the “Documentation”), is for yourinformational purposes onlyandis s ubject to change or withdrawal by CAatanytime. This
Documentationis proprietaryinformation of CAand maynotbe copied, transferred, reproduced, disclosed, modified or
duplicated, inwhole orin part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copiesof the Documentation forinternal use by you and your employeesin connection with
thatsoftware, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The rightto print or otherwise make available copiesof the Documentation is limited to the period during which the applicable
license for such software remains in fullforce and effect. Should the license terminate foranyreason, itis your responsibility to
certifyin writing to CAthatall copies and partial copies of the Documentation have beenreturnedto CA ordestroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CAPROVIDES THISDOCUMENTATION “AS IS” WITHOUTWARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FORA PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CABE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THISDOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IFCA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCHLOSS OR DAMAGE.

The use of anysoftware product referencedinthe Documentationis governed bythe applicable license agreement and such
license agreementis not modified inanywaybythe terms ofthis notice.

The manufacturer of this Documentationis CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government s subject to the restrictions
setforth in FARSections 12.212,52.227-14,and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
theirsuccessors.

Copyright © 2016 CA. All rights reserved. All trademarks, trade names, service marks, andlogos referenced herein belongto
theirrespective companies.

CA Technologies Product References

This document references the following CA Technologies products:

m CA ERwin® Data Modeler (CA ERwin DM)

Contact CA Technologies

Understanding your Support

Review support maintenance programs and offerings.

Registering for Support

Access the CA Support onlineregistration site to register for productsupport.
Accessing Technical Support

For your convenience, CA Technologies provides easy access to "One Stop" support for
all editions of CA ERwin Data Modeler, andincludes the following:

m Onlineandtelephone contactinformation for technical assistanceand customer
services

m |nformationabout user communities and forums

m Product and documentation downloads

m CA Support policies and guidelines

m Other helpful resources appropriate for your product

For information aboutother Home Office, Small Business,and Enterprise CA
Technologies products, visit http://ca.com/support.

Provide Feedback

If you have comments or questions about CA Technologies product documentation, you
cansend a message to techpubs@ca.com.

If you would liketo providefeedback about CA Technologies product documentation,
complete our shortcustomer survey, whichis alsoavailable on the CA Support website,
found at http://ca.com/docs.

CA ERwin Data Modeler News and Events

Visitwww.erwin.com to get up-to-date news, announcements, and events. View video
demos andread up on customer success stories and articles by industry experts.

https://support.ca.com/prodinfo/dmsupportofferings
https://support.ca.com/prodinfo/supportregistration
https://support.ca.com/prodinfo/erwin
http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs
http://ca.com/docs
http://www.erwin.com/
http://www.erwin.com/

Contents

Chapter 1: Introduction 9
BENEfitS Of DAta MOUEIING....cuccviieeiieeeeeeete ettt ettt e st et e st e s et eseeae e b et ebe st assebetesesbaneebesbessesabensesensesesbannas 9
IMEEENOAS ...ttt et e et E R e A bR E R Rt R Rt R e R et R R e Rt E R et R e Rt s e e st nneneneas 10
TYPOZraPNiCal CONVENTIONSccvivietiieiitceeetees et ettt et e et st e e et e e ese et ese e b et esa et e ssessesessesessessesessensesesaansesensasessansesersans 10
Chapter 2: Information Systems, Databases, and Models 11
(DR = 1Y/ [Yo LT 1 oY TR T PR RTRRRRRSRRRRI 11
DAt MOAEIING SESSIONSucveueieieiieieietete e et te st te st et e te e e te st e st etesbese et e s ebe et eneebe s eseesessess st ansesessassesansesestenseseesansesesesessensnsensans 12
SESSION ROIES.....eieeieieieieieeert ettt ettt s st e et s e e e b s e st e e bR et s e b et s s e b e et e b e st ae e esene e sreneneas 13
Sample IDEF1X Modeling MEthOTOIOZY ..ottt ettt e ettt bt e st e e be st e et e e enetenes 14
MOAEITNG AFCHITECTUIE ...ttt s et e Rt e s b et e e b et se b ese e s nsene e s eneneas 15
LOGICAl IMOTEIS ...ttt ettt e st et et e e b et e se et ese e s et ene e b e s ese et esees et ese et esbessesensesesbans et ensanestansesessesesetans 16
ENtity RelatioNShiP DIarami. . i ittt ettt sttt ettt be s b e s b e s e se s s et e b e s enesbentenesaensenesans 16
KEY-BASEU IMOUEL....c.ocuiieeeetiieieerc ettt ettt e ettt e e e s b e e b e e e se e b et esesee st e b e e es e et aseeseseentesessansssensesessnnsssansans 16
FUITY-ATEITDUTEA IMOT L ...ttt ettt ettt st se et e e e b e e be st ese st assebe st eseebensebe s ansesesbessssansesesans 16
PRYSICAl IMIOTEIS ...ttt etttk et et e be st et e sesa e st s b et e s e st ese et et e st saensesesaenesbensenessensesessensenesans 17
Transformation Model .17
DBIMS IMIOQ € ...ttt ettt ettt et et e e b ese et eseeseebe s eseeba st et e s eseeseneebe s ensese b essesensesesbansesensesessensenetans 18
Chapter 3: Logical Models 19
CoNSTrUCTING A LOGICAl IMOUEL ...ttt ettt ettt a e s et e e e se et e e e be s eneebessebeseseeasebensesessenssanes 19
ENtity REIatiONSHiP DIagrami. . i cicicieiiieesiees ettt ettt ettt e et e e s et e s e besbassesesesessessesesaensssaseentesesasessansesasans 20
Entities and AribDULES DEfiNEM ..ottt sttt st b ettt et ettt 21
LOGICaAl REIGTIONSNIPS ..ouveviiiieieieirice ettt ettt ettt e e st s ae e e se s s e s e e s e s e s e saeneebessensesessenesaensssersans 22
ManNY-t0-Many REIAtiONSNIPS....ccuiiiieieiieiseeseerte ettt et e ettt e st e se st e e e be s e s s e s esesessensesessasestensesessanseseasans 23
Logical Model DeSigN Validationccceerrereiririeesireeeree ettt ettt bbb nnene e 24
DAta MOEI EXAMPIE .ottt ettt et e et e et e st et e e e b et ese et e s s eseesessese st essesessase st ensesessansesasasessensesessanensarsans 25
Chapter 4: The Key-Based Data Model 27
N2V Y =TT
Entity and Non-Key Areas
Primary KEY SEIECTI ONuueeiiiieiieee ettt ettt ettt et b et et s b e s e s e sb e st e b e s esesbentebesaentesesentsb et esessansesaneans
ALEINATE KOY ATIITDULES ..voeeeiteiteeeces sttt ettt e e e e st ese e b et et e s et ese et eseese st eseebesseneesestassesensasessansesensans
INVEISION ENTIY AT TDULES ..ottt ettt st ettt e st e s ebe e s ebeseaesaebenesaebesenensesesenensesanens
Relationships and FOreign KeY ALLriDULEScc.civiiieirieieeeeiee ettt ettt et sa et e s e e et e e beseesesesessasessansans 31

Contents 5

Dependent and INAePendENt ENTITIESccccerieicieiieiicee ettt te et te e sa e s b be e ebesbestesesbassesesbenessansesesans 32
[AENTifyiNg REIATIONSNIPS....icieieiiiiiieieeets ettt ettt ettt et st e e s se s s e s e s e e e esesaenesbesaesessessenessensesensans 33
Nonidentifying Relationships

Rolenames

Chapter 5: Naming and Defining Entities and Attributes 37
ENTiTY @Nd ATEITDULE NGIMES ...vvieiieieicieeerere ettt ettt b et et s et e s e et et eae et esesene st besenesbesenensesasenensesanens 37
Synonyms, HOMO NYMS, @N ALTASESccueerriciririeiriireseseeis et esteses et ae s e see e s e e esesse e ssaste e st esaesessasessessenesseneesensanes 38
BTy DI MITIONS ...ttt ettt ettt a et e e et et e se et e e et et et ebesaess et essese st ess et e s eseebensesesbanseb e seneetensetestenteseetans 39
DS i PEi ONS.cueeeeetete ettt st s e sttt et et e b e s b e s b e s b s st e st e st et e b e sae e st e st e Rt e s s e st e b e b e s b e sh e s Rt e b e be s e s R e eReeReeRe e Rt ent e benrenaenat 39
Definition References and CirCUIATITY ...ttt et a et e st e st e s esesbesesbennesetans 40
BUSINESS GlOSSAIY CONSTIUCTON..ueuiieieieeiirieteteesisteseeees et e et aets e st te e e tesa e s e sssse et esesenesaesensssstenesessesesessesesanensesenensees 41
ALETTDULE DI NMITIONS ..ttt ettt sttt b bbb e be e b e b et b e st senbese s e b enentne 41
VAl AT ON RUIES ...ttt b ettt b et bt b et bbb b et et e b et et e ke se st et ebe et et ebe et ebebanetanan

20T =T F= 1< TSRS

Definitions and Business Rules

Chapter 6: Relationships 45
ReIQtioNShiP CardiNaliTy c..cccieeeieieieiceeceee ettt et e et aese st e e s e s b ess et e s ese et enees e bensesessaseesensasessensesarsans 45
Cardinalityin Nonidentifying REIQtiONSNIPSccceuieieieiecieiiceeseeteee ettt st et a st eb e s be e ebesaeneesens 47
RET I ENT Q] INTEE LY. iuieteiiiieieeei ettt ettt ettt e e e b et ese et e s e ese s b e s ees et eseebeseeseeteneasessansesesasessensesessensasensans 49
Referential INtEErity OPLIONS ..ottt ettt et e bt et st e et et ese st e e ebe s essesesbesssbensebestansesensesessanseneatans 51
RI, Cardinality, and Identifying RelatioNShiPs.... ..ottt st sa s snene 53
RI, Cardinality, and Non-ldentifying RelatioNShiPs........cccceivieieerieiniesieiseteeste ettt e e sa e st e e s sesaesseseebens 54
Additional REIatioNSNiP TYPES....c.cieiiuiiririeieiereeerr ettt ettt ettt e st e s b et nene e s 55
ManNY-t0-Many RElAtiONSNIPS....ccuciriiieiirieisteeseere et ettt te e sttt et e se st e e e be s e s s esetesessansesessasessessesessensasessans 55
N-ATY REIGEIONSNIPS ...ttt ettt et ettt et s et et et e s ese st ssese e et esese s saesene e eteseseebeseaesesesnnesesasensres 57
RECUISIVE REIQTIONSNIPS ..eviieiieieieiiie ettt ettt ettt e e e b e et e s e e e s e e s e e eseseeneebesessesesanessansesensans 59
SUDTYPE REIATIONSNIPS ..ottt et ettt s be b e be et et eae et eseebe st ene et assese s ensesesbaneebesenentanes 61
Complete Compared to Incomplete SUDTYPE STrUCTUIEScvviivieicicce et 63
Inclusive and EXClUSIVE REIAT ONSNIPS ...cviuieieieiieeeee ettt sa e st e st e s e st esesaennesenaans

IDEF1X and IE Subtype Notationcccccceuuue...
When to Create a Subtype Relationship

Chapter 7: Normalization Problems and Solutions 67
INOTMATIZATION ottt ettt e b e e R st e e e s et e Rt s e b e st e s e e b ettt e s ese e nsene e nserentas 67
OVErVIiEW Of the NOTMAl FOIMS ...ttt ettt sttt s b ettt st ekttt e et st e e st be et es 68
ComMMON DESIZN PrOBIEMS ...t ettt s et es 69
REP EATING DAt GrOUPS cvicveevierieiiiiiiteitesiesiesteitestessestessestestesbessestestessessessessessessesssassassessessesssessensessensensessessesssassansensassensense 69
Multiple Use Of the SAmME AT DULEccieieieeiirieece ettt et sttt s et seseneee 71

6 Data Modeling Overview Guide

Multiple Occurrences Of Tthe SAME FACT.....ci ettt ettt sbe et e s ba e sesbenesaansesentans 73

[00o T o ot 4 = =Y o1 €3OS 74

DEIIVE ALETTDULES ...ttt ettt sttt skt a et st e bt et be s et s b e b et ek e et ebese et et ebe et ebenentee

Missing Information
UNEFICATON 1ttt ettt sttt b et e e bbbt e b e b et E ek s e et e b e s et e b ebe et e b esent st ke sttt eb et et ebene e nsebenens
How Much NOrmalization IS ENOUEN ...ttt sttt ettt s b e se st sa e s ssssenensesanens 80
SUPPOIE FOr NOIMATIZATION.....iitiieicerc ettt sttt et e e s s b et e se st e se e b e e ese st e st esessesaesesseneeseseesesanes

First Normal Form Support

Second and Third NOIrmMal FOrM SUPPOIT ...cviirieiiiieirietri ettt et et e e s s e st e et e e ssa st e s ssesaesessensesassenes 83
Chapter 8: Physical Models 85
[0 oY =Tt €YU 85
Support for the Roles of the PRYSICal IMOUEL........ccicuiiiieirieri ettt st sa e s s 86

Summary of Logical and Physical Model COMPONENTScceeiiieiiiiciee ettt ettt s ae et se b sae s 86
DENOIMATIZATI ON ettt et b et h bt s e bt b e e a e e e R et e e R e Rt e e b et b s et R e R e nenrenenea 87
Appendix A: Dependent Entity Types 89
Classification Of DEPENUENT ENTITIESccccvueeiririeieirieieesee et e et s sttt se s e as e et s s ese e sae e e s s bese e besane e st esanesesanensees 89
Glossary 91
Index 95

Contents 7

Chapter 1: Introduction

Whiledata modeling can be complex, this Overview Guide can help Data Architects
understand data modelingand its uses.
Overall, this guide has the following purposes:

m Providea basiclevel of understanding of the data modeling method used by CA
ERwin DM thatis sufficientto do real databasedesign.

m Introduce some of the descriptive power andrichness of the IDEF1X and IE
modeling languages supported, and to provide a foundation for future learning.

m Provideinformation about the supported features of IDEF1X and IE in CA ERwin
DM, andthe mapping between these methods.
This section contains the followingtopics:

Benefits of Data Modeling (see page 9)
Methods (see page 10)
Typographical Conventions (see page 10)

Benefits of Data Modeling

Regardless of the DBMS you use or the types of data models you want to develop,
modeling your databasein CA ERwin DM has many benefits:

m Enables usageby databaseandapplication development staffto define system
requirements andto communicate among themselves and with end users.

m Provides a clear pictureof referential integrity constraints. Maintaining referential
integrity is essential intherelational model where relationships areencoded
implicitly.

m Provides alogical RDBMS-independent picture of your databasethat automated
tools canuse to generate RDBMS-specificinformation. This way, you canuse a
singlediagramto generate DB2 table schemas, and schemas for other relational
DBMSs.

m Llets you produce a diagramsummarizing the results of your data modeling efforts
andgenerate a databaseschema from that model.

Chapter 1: Introduction 9

Methods

Methods

CA ERwin DM supports two methods of data modeling:
IDEF1X

The United States Air Force developed the IDEF1X method. The IDEF1X method is
now usedin various governmental agencies,inthe aerospaceandfinancialindustry,
andina wide variety of major corporations.

IE (Information Engineering)
James Martin, Clive Finkelstein, and other IE authorities developed the IE method,

whichis widely deployed invarious industries.

Both methods are suited to environments where large-scale, rigorous, enterprise-wide
data modeling is essential.

Typographical Conventions

The followingtabledescribes the typographical conventions used in this guideto
identify key terms:

Text ltem Convention Example

Entity Name All uppercase, followed by the word MOVIE COPY entity
"entity" inlowercase

Attribute Name All lowercasein quotation marks "movie name"

Column Name All lowercase movie_name

Table Name All uppercase MOVIE_COPY

Verb Phrase All lowercaseinanglebrackets <is availableforrental as>

10 Data Modeling Overview Guide

Chapter 2: Information Systems,

Databases,

and Models

This section contains the followingtopics:

Data Modeling (see page 11)
Data Modeling Sessions (seepage 12)

Sample IDEF1X Modeling Methodology (see page 14)

Modeling Architecture (see page 15)

Logical Models (see page 16)
Physical Models (see page 17)

Data Modeling

Data modeling

Data modeling is the process of describinginformation structures and capturing
business rules to specify information system requirements. Data models represent
a balancebetween the specific needs of an RDBMS implementation project, and the
general needs of the business area thatrequires it.

When created with the full participation of businessand systems professionals,thedata
model can provide many benefits. These benefits generallyfall into the following two
classes:

Effort

The staff associated with the process of creating the model.

Product of the Effort

The staff primarily associated with the model.

Examples of Product Benefits

A data model is independent of implementation, soit does not require that the
implementation isinany particulardatabaseor programminglanguage.

A data model is an unambiguous specification of what is wanted.

The model is businessuser-driven. The business clientcontrols thecontent and
structure of the model, rather than the system developer. The emphasisison
requirements rather than constraints or solutions.

The terms used inthe model are stated inthe language of the business, notthat of
the system development organization.

The model provides a context to focus your discussions aboutwhatis importantto
the business.

Chapter 2: Information Systems, Databases, and Models 11

Data Modeling Sessions

Examples of Process Benefits

m Duringearly project phases, model development sessions bringtogether individuals
from many parts of the business. Thesessions providea structured forum where
business needs and policies arediscussed. Business staff typically meets others for
the firsttime, and meets others in different parts of the organization whoare
concerned with the sameneeds.

m Sessions |leadto development of a common business language with consistentand
precisedefinitions of terms used. Communication among participantsis greatly
increased.

m Earlyphasesessions providea mechanismfor exchanging largeamounts of
information among business participants and transferring much business
knowledge to the system developers. Later phase sessions continuethattransfer of
knowledge to the staff who will implement the solution.

m Session participants arebetter ableto see how their activities fitintoa larger
context. Also, parts of the projectcan be seen inthe context of the whole. The
emphasis is on cooperation rather than separation. Over time, cooperationleads to
ashiftinvalues, andthe reinforcement of a cooperative philosophy.

m Sessions foster consensus and build teams.

Design of the data structures to support a business area is only one partof developinga
system. Function modeling, the analysis of processes (function)is equally important.
Function models describe how something is done. They can be presented as hierarchical
decomposition charts, data flow diagrams, HIPO diagrams, and so on. Developing both
your function models and data models at the same time is important. Discussion of the
functions that the system performs uncovers the data requirements. Discussion of the
data typically uncovers additional function requirements. Function and data are the two
sides of the system development coin.

Data Modeling Sessions

Creating a data model involves notonly model construction, but also manyfact-finding
sessions (meetings) to uncover the data and processes used by a business.Running
good sessions, likerunning good meetings of anykind, depends on preparationand
real-time facilitation techniques. In general, include the right mix of business and
technical experts, and facilitatethe modelingsessions.Schedule modelingsessions in
advance, carefully planto cover sets of focused material,and orchestrateitinaway to
achievethe results yourequire.

When possible,itis highly recommended that modeling of function and data be done at
the same time. Functional models tend to validatea data model and uncover new data
requirements, and helps ensure that the data model supports function requirements.

12 Data Modeling Overview Guide

Data Modeling Sessions

Session Roles

Formal, guided sessions, with defined roles for participants and agreed upon procedures
andrules,are anabsoluterequirement. The followingroles work well:

Facilitator

A facilitator acts asthe session guideandis responsiblefor:
- Arrangingthe meetings and facilities
- Providingfollow-up documentation

— Intervening duringsessions, as necessary, to keep sessions ontrackandto
control the scope of the session.

Data Architect

Leads the group through the process of developing and validatingthe model. A data
architectdevelops the model, inreal timeif possible,infrontof the group. The data
architectasks pertinent questions that bring out the importantdetails and records
the resulting structurefor all tosee. The same individual canfill both facilitator and
data architectroles,althoughit canbe difficult.

Data Analyst

Acts as the scribefor the session and records the definitions of all theentities and
attributes that make up the model. Using the information from the business
experts, the data analystcanalsobeginto packageentities and attributes into
subjectareas.Subject areas aresimply manageableand meaningful subsets of the
complete data model.

Subject Matter Expert

Provides the business information necessary to constructthe model. You can have
more than one subject matter expert. They are business experts, not systems
experts.

Manager

Participates inthesessionsinanassigned role(such as facilitator or subject matter
expert) and keeps the process moving. The manager has the responsibility of
“breaking ties” but only when necessary. The manager can be from either the
systems or business community.

Chapter 2: Information Systems, Databases, and Models 13

Sample IDEF1X Modeling Methodology

Sample IDEF1X Modeling Methodology

CA ERwin DM was developed to supportthe IDEF1X and IE modeling standards. The use
of various levels of models within the IDEF1X method can be helpful in developinga
system. General model levels areoutlined inthe IDEF1X standard. In practice,you can
expand or contractthe number of levels to fitindividual situations.

Model levels generally span from a wide view to a narrowview, depending on project
requirements. A wide but not too detailed view canincludeonly the major entities that
areimportantto a business. A narrowview canincludea level of precisionrequired to
represent the databasedesigninterms understandablebya particular DBMS. At the
lowest level of detail, models are technology-dependent. For example, a model for an
IMS databaselooks differentfrom a model for a DB2 database. At higher levels, models
are technology independent and can represent informationthatis notstored in any
automated system.

The modeling levels presented are suited to a top-down system development lifecycle
approach, where successivelevels of detail arecreated duringeach projectphase.
The highest level models come intwo forms:
Entity Relationship Diagram (ERD)
Identifies major business entities and their relationships.
Key-Based (KB)
Sets the scope of the business information requirement (all entities areincluded)
and begins to expose the detail.
The lower-level models alsocome intwo forms:
Fully-Attributed (FA)

Represents a third normal form model that contains all of the detail for a particular
implementation effort.

Transformation Model (TM)

Represents a transformation ofthe relational model into a structure, whichis
appropriateto the DBMS chosen forimplementation. The TM, in most cases, is no
longer inthird normal form. The structures are optimized based on the capabilities
of the DBMS, the data volumes, and the expected access patterns and rates against
the data.Ina way, a TM is a picture of the eventual physicaldatabasedesign.

DBMS Model

The databasedesignis containedinthe DBMS Model for the system. The DBMS
Model canbe a project level model or anarea level model for the entire integrated
system.

14 Data Modeling Overview Guide

Modeling Architecture

Modeling Architecture

Five modeling levels arepresented inthe followingillustration. Noticethat the DBMS
model canbe at either an Area Level scope, or a Project Level scope. Itis notuncommon
to have single ERD and KB models for a business,and multiple DBMS models. You can
have one DBMS model for each implementation environment, and another set within
that environment for projects that do not sharedatabases.Inanideal situation, thereis
a set of Area Level scope DBMS models. One Area Level scope DBMS model for each
environment, with complete data sharingacrossall projects inthatenvironment.

SCOPE
=} =
A
ENTITY-RELATIOMNSHIP DHAGRAM
ARER
LEVEL
KEY-BASED MODEL
———
LEVEL OF o
DETAIL FULLY- FULLY-
ATTRIBUTED Ll ATTRIBUTED
MODEL MODEL
PROJECT
LEWEL
TRAMNSFORM - TRANSFORM
MODEL MODEL
-‘—
DBMS MODEL

The models fall into two categories:
m logical

m Physical

Chapter 2: Information Systems, Databases, and Models 15

Logical Models

Logical Models

There are three levels of logical models thatare used to capture business information
requirements:

m Entity Relationship diagram

m Key-Based model

m Fully-Attributed model

The Entity Relationship diagramand the Key-Based models are also known as area data
models. They often cover a wide business area thatis larger thanthe business chooses
to address with a singleautomation project. In contrast, the Fully-Attributed model is a

project data model. Typicallyitdescribesa portion of an overall data structureintended
for supportby a singleautomation effort.

Entity Relationship Diagram

Key-Based Model

Fully-Attributed M

The Entity Relationship diagram (ERD) s a high-level data model that shows the major
entities andrelationships, which supporta wide business area. An ERD is primarilya
presentation or discussion model.

The ERD objective is to providea view of business information requirements to satisfy
the need for broad planningfor development of its information system. These models
are not detailed (only major entities are included), and not much detail,ifany, on
attributes. Many-to-many (nonspecific) relationships areallowed, and keys are generally
not included.

A key-based (KB) model describes the major data structures, which supporta wide
business area. All entities and primary keys are included with sampleattributes.

The objective of the KB model is to providea broad business view of data structures and
keys required to support the area. A KB model provides a context where detailed
implementation level models can be constructed. The model covers the same scope as
the Area ERD, but exposes more of the detail.

odel

A fully-attributed (FA) model is a third normal form data model that includes all entities,
attributes, and relationshipsrequired by a single project. The model includes entity
instancevolumes,access paths andrates, and expected transactionaccess patterns
across thedata structure.

16 Data Modeling Overview Guide

Physical Models

Physical Models

Two levels of physical models existfor animplementation project:
m Transformation model

m DBMS model

The physical models captureall of the information that data architects and database
administratorsrequireto implement a logical model as a databasesystem. The
Transformation model is also a project data model that describes a portion of an overall
data structure supported by a singleautomation effort. Individual projects withina
business area aresupported, allowingthe modeler to separate a larger area model into
submodels, or subjectareas.Subject areas can be developed, reported on, and
generated to the databaseinisolation fromthe area model and other subjectareasin
the model.

Transformation Model

The objectives of the Transformation model include:

m Providethe databaseadministrator with sufficientinformation to create an efficient
physical database

m Providea context for the definition and recording of the data elements

m Holdthe records that form the databaseinthe data dictionary

m Help the applicationteamselect a physical structurefor the programs that will
access the data.

Duringthe development effort, the model canalso providethe basis for comparingthe

physical databasedesignagainsttheoriginal businessinformation requirements to:

m Demonstrate that the physical databasedesign adequately supports those
requirements.

m Document physicaldesign choices and theirimplications,suchaswhatis satisfied,
and what is not.

m |dentify databaseextensibility capabilities and constraints.

Chapter 2: Information Systems, Databases, and Models 17

Physical Models

DBMS Model

The Transformation model directly translates into a DBMS model, which captures the
physical database objectdefinitions inthe RDBMS schema or databasecatalog. The
schema generation function directly supports this model. Primary keys become unique
indexes. Alternate keys andinversion entries can also become indexes. Cardinality can
be enforced either through the referential integrity capabilities of the DBMS, application
logic, or “after the fact” detection and repair of violations.

18 Data Modeling Overview Guide

Chapter 3: Logical Models

This section contains the following topics:

Constructinga Logical Model (see page 19)
Entity Relationship Diagram (see page 20)
Logical Model Design Validation (see page 24)
Data Model Example (see page 25)

Constructing a Logical Model

The firststep in constructinga logical model is developingthe Entity Relationship
diagram (ERD), a high-level data model of a wide business area. An ERD is made up of
three main buildingblocks: entities, attributes, and relationships. Adiagramcan be
viewed as a graphicallanguagefor expressing statements about your business. Entities
are the nouns, attributes are the adjectives or modifiers,and relationships arethe
verbs. Building a data model is simply a matter of putting together the rightcollection of
nouns, verbs, and adjectives.

The objective of the ERD is to providea broad view of business information
requirements sufficientto planfor development of the business information system.
ERD models arenot detailed (only major entities are included) and there is not much
detail,ifany, about attributes. Many-to-many (nonspecific) relationships areallowed
and keys are generally notincluded. An ERD model is primarily a presentation or
discussion model.

An ERD canbe dividedinto subjectareas, whichare used to define business views or
specificareas ofinterestto individual business functions. Subjectareas help reduce
larger models into smaller, more manageablesubsets of entities that can be more easily
defined and maintained.

Many methods are availablefor developingthe ERD. These range from formal modeling
sessions toindividualinterviews with business managers who have responsibility for
wide areas.

Chapter 3: Logical Models 19

Entity Relationship Diagram

Entity Relationship Diagram

If you arefamiliar with a relational databasestructure, you know that the most
fundamental component of a relational databaseis thetable. Tables are used to
organizeand store information. Atableis organizedin columns and rows of data. Each
row contains a set of facts, whichis aninstanceof the table.

Ina relational database, all data values mustalso beatomic, which means that each cell
inthe table cancontainonlyasinglefact. A relationship also exists between the tables
inthe database.Each relationshipis representedinan RDBMS by sharingone or more
columnsintwo tables.

Like the tables and columns that comprisea physical model of a relational database,an
ERD (and all other logical data models)includes equivalentcomponents. The
components let you model the data structures of the business, rather thanthe database
management system. The logicalequivalenttoa tableis anentity, and the logical
equivalentto a columnis anattribute.

Inan ERD, a box represents an entity, which contains the name of the entity. Entity
names are always singular: CUSTOMER not CUSTOMERS, MOVIE not MOVIES, COUNTRY
not COUNTRIES. By usingsingularnouns, you benefit from a consistentnamingstandard
andfacilitatereadingthe diagramas a set of declarative statements about entity
instances.

The followingillustration depicts a hypothetical video store. The video store must track
its customers, movies that can be rented or purchased,and rental copies of moviesin
the store.

MOVIE

CUSTOMER H MOVIERENTAL COPY

Inan ERD, alinedrawn between the entities inthe model represents a relationship. A
relationship between two entities alsoimplies thatfacts in one entity refer to, or are
associated with, facts in another entity. Inthe preceding example, the video store must
trackinformation about CUSTOMERs and MOVIE RENTAL COPYs. The informationin
these two entities is related, and this relationship can beexpressedin a statement: A
CUSTOMER rents one or more MOVIE RENTAL COPYs.

20 Data Modeling Overview Guide

Entity Relationship Diagram

Entities and Attributes Defined

An entity is any person, place, thing, event, or concept about whichinformationis kept.
More precisely,anentity is a set or collection of like individual objects known as
instances.An instance(row) is a singleoccurrence ofa given entity. Eachinstance must
have anidentity distinctfrom all otherinstances.

Inthe precedingillustration, the CUSTOMER entity represents the set of all the possible
customers of a business. Eachinstance of the CUSTOMER entity is a customer. You can
listinformation foranentity ina sampleinstancetable, suchasis shownin the following

illustration:

CUSTOMER

customer id customer name customer address
10001 Ed Green Princeton, NJ
10011 Margaret Henley New Brunswick, NJ
10012 Tomas Perez Berkeley, CA
17886 Jonathon Walters New York, NY
10034 Greg Smith Princeton, NJ

Each instancerepresents a set of facts about the related entity. Inthe preceding table,
each instance of the CUSTOMER entity includes information aboutthe “customer id,”
“customer name,” and “customer address.” Ina logical model, these properties are
known as the attributes of anentity. Each attribute captures a single piece of
information aboutthe entity.

Chapter 3: Logical Models 21

Entity Relationship Diagram

You canincludeattributes inan ERD to describethe entities inthe model more fully, as
shown inthe followingillustration:

MOVIE
mowvie id
mMovie name
movie year
mowvie description
movie genre
CUSTOMER MOVIERENTAL COPY
customer id mowvie copy id
mowie id
oust fiti
OmEer name e "
cuctomver address number of rentals
customer phone

Logical Relationships

Relationshipsrepresentconnections, links, or associations between entities. They are
the verbs of a diagramthatshow how entities relate to each other. Easyto understand
rules help business professionals validate data constraints and ultimately identify
relationship cardinality.

Examples of one-to-many relationships:

m A TEAM <has>many PLAYERs

® A PLANE FLIGHT <transports>many PASSENGERs

m A DOUBLES TENNIS MATCH <requires> exactly 4 PLAYERs

m A HOUSE <is owned by> one or more OWNERs

m A SALESPERSON <sells>many PRODUCTs

22 Data Modeling Overview Guide

Entity Relationship Diagram

Inall of these cases, the relationshipsarechosen so that the connection between the
two entities is whatis known as one-to-many. A one-to-many means that one (andonly
one instance) of the firstentity is related or connected to many instances of the second
entity. The entity on the one-end is known as the parent entity. The entity on the
many-end is known as the child entity.

Relationshipsaredisplayed as a line connecting two entities, with a dot on one end, and
averb phrasewritten alongthe line. Inthe previous examples, the verb phrases arethe
words insidethe brackets, such as <sells>. The following figure shows the relationship
between PLANE FLIGHTs and PASSENGERs on that flight:

transports

PLAME FLIGHT —‘ PASSENGER

Many-to-Many Relationships

A many-to-many relationshipis also known as a nonspecific relationship. A
many-to-many relationship represents a situation where an instancein one entity
relates to one or more instances inasecond entity, andan instanceinthe second entity
alsorelates to one or more instances inthe firstentity. In the video store example, a
many-to-many relationship occurs between a CUSTOMER and a MOVIE COPY. From a
conceptual pointof view, this many-to-many relationship indicates that:

m A CUSTOMER <rents> many MOVIE COPYs
m A MOVIE COPY <is rented by> many CUSTOMERs
You typically use many-to-many relationshipsina preliminary stage of diagram

development, suchasinanERD. Many-to-many relationshipsarerepresented in IDEF1X
as asolidlinewith dots on both ends.

CUSTOMER MOVIECOPY
rents .
customer number maovie copy number
is rented by
customer name general condition
customer address
customer status code

Chapter 3: Logical Models 23

Logical Model Design Validation

Because a many-to-many relationship can hide other business rules or constraints, itis
better to explore them later inthe modeling process. For example, sometimes a
many-to-many relationshipidentified in early modeling stages is mislabeled,andis
actuallytwo one-to-many relationships between related entities. Or, the business must
keep additional facts aboutthe many-to-many relationship, such as dates or comments.
The resultis that anadditional entity to keep these facts replaces the many-to-many
relationship. Discuss in detailall many-to-many relationships later in the modeling
process to help ensure that the relationshipis modeled correctly.

Logical Model Design Validation

A data model exposes many of the business rules thatdescribethe area being modeled.
Reading the relationships helps you validatethatthe design of the logical model is
correct. Verb phrases providea brief summary of the business rules embodi ed by
relationships. Although they do not precisely describethe rules, verb phrases do provide
aninitial senseof how the entities are connected.

If you choosevyour verb phrases correctly, you canread a relationship fromthe parent
to the child usingan active verb phrase.

Example:
A PLANE FLIGHT <transports>many PASSENGERs.

Verb phrases canalsobereadfrom the perspective of the child entity. You can often
read from the child entity perspective using passive verb phrases.

Example:
Many PASSENGERs <are transported by> a PLANE FLIGHT.
Verifyingthat each verb phraseinthe model results invalid statements is a good

practice. Reading your model backto the business analysts and subject matter experts is
a good way to verify that it correctly captures the business rules.

24 Data Modeling Overview Guide

Data Model Example

Data Model Example

The following model of a databasewas constructed for a hypothetical video store:

S cusTosm %
[Ty——— i
H movie number
auntomeer name [AK1JE1] H
ol omeed address [AR1) .: CUSTOMER .
il vt S st code - Swbject Afea :::‘:.:;Iu”
l!nhr-kl H movhe rental rate
MOVIERENTAL FECORD ::, S I———
renling custamer . customer rumber t::;\ : "
moeie mumber [FE] H
miie ooy namber (FK) H .
rentsl record date i . £ cove
i B peaed under [mevie number Pl
rental date . mnnie Lopry framber
dus date H
rental status H _ peneral condition J
payment amount H
paryment date ' Pp——
payment sialus ,: = 1 A
e charige -./" E
.. AR RS,
oy | e :. han ivober maed ol
I OVERDUE NOTIE i INVOLVEMENT RECORD 1
D1 fmovie sopy mumber [FK) EMPLOYEE mavie copy mumber (7]
I :::E:ﬂ:n H employes mumber mowie number [FK}
H : o prtdn klsbﬁln:‘. P rental revord date [FK)
ERE .;‘:M"‘“‘, :“ ------- employes name (IEL) senting auitomser [FK)
H R e fate rmpkoyee sddress iresher mene timeamp
H hise date emmployee number (F)
E H emphoyes number [FE} salary > —
2%\ overdie notie smount SpErwser empbyee mimber [FK) P weokiement type

The data model of the video store, with definitions of the objects presented on it, makes
the followingassertions:

A MOVIE isinstockas one or more MOVIE COPYs. Information recorded about a
MOVIE includes its name, a rating, and a rental rate. The general condition of each
MOVIE COPY is recorded.

The store's CUSTOMERs rent the MOVIE COPYs. A MOVIE RENTAL RECORD records
the information aboutthe rental of a MOVIE COPY by a CUSTOMER. The same
MOVIE COPY can, over time, be rented to many CUSTOMERs.

Each MOVIE RENTAL RECORD alsorecords a duedate for the movie and a status
indicating whether itis overdue. Depending on a CUSTOMER's previous relationship
with the store, a CUSTOMER is assigned a creditstatus code that indicates whether
the store accepts checks or credit cards for payment, or accepts onlycash.

The store's EMPLOYEEs are involved with many MOVIE RENTAL RECORDs, as
specified by an involvement type. There must be atleastone EMPLOYEE involved
with each record. Because the same EMPLOYEE might be involved with the same
rental record several times on the same day, involvements are distinguished with a
timestamp.

Chapter 3: Logical Models 25

Data Model Example

m An overdue chargeis sometimes collected on a rental of a MOVIE COPY. OVERDUE
NOTICEs remind a CUSTOMER to return a movie. An EMPLOYEE is sometimes listed
on an OVERDUE NOTICE.

m The store keeps salaryandaddress information abouteach EMPLOYEE. The store
may have to look up CUSTOMERs, EMPLOYEEs, and MOVIEs by name, rather than
by number.

The data model exampleis relatively small, butitsays a lotabout the video rental store.
You canget anidea of what a database for the business canlooklike,and a good picture
of the business. Several different types of graphical objects are presented in this
diagram. The entities, attributes, and relationships, with the other symbols, describe our
business rules. The following sections describe what the different graphical objects
mean, and how to use CA ERwin DM to create your own logicaland physical data
models.

26 Data Modeling Overview Guide

Chapter 4: The Key-Based Data Model

A key-based (KB) model is a data model that fully describes all of the major data
structures that support a wide business area.The goal of a KB model is to includeall
entities and attributes that areof interest to the business.

As its name suggests, a KB model alsoincludes keys. Ina logical model, a key identifies

unique instances withinan entity. When implemented in a physical model, a key
provides easyaccess to the underlying data.

The key-based model basically covers thesame scopeas the Entity Relationship Diagram
(ERD). However, itexposes more of the detail,includingthe context where detailed
implementation level models can be constructed.

MOVIE

Keys

movie name

movie year

movie description

movie genre
CUSTOMER MOVIERENTAL COPY

: customer id >

customer name e
general condition
customer address
number of rentals
customer phone

This section contains the followingtopics:

Key Types (see page 28)

Primary Key Selection (see page 28)

Alternate Key Attributes (see page 30)

Inversion Entry Attributes (see page 31)
Relationshipsand Foreign Key Attributes (see page 31)

Chapter 4: The Key-Based Data Model 27

Key Types

Key Types

Whenever you create an entity inyour data model, one of the mostimportant questions
to askis:“How canauniqueinstancebe identified?” To develop a correct logical data
model, you uniquelyidentify each instancein an entity.

Ineach entity ina data model, a horizontal lineseparates theattributes intotwo groups,
key areas and nonkey areas.The area above the lineis the key area, and the area below
the lineis the nonkey area, or data area.The key area of CUSTOMER contains “customer
id” and the data area contains “customer name,” “customer address,” and “customer
phone.”

Entity and Non-Key Areas

The key area contains the primary key for the entity. The primarykey is a set of
attributes used to identify unique instances of an entity. The primary key can be
comprised of one or more primary key attributes, if the chosen attributes form a unique
identifier for each instanceinan entity.

An entity usually has many nonkey attributes, which appear below the horizontal line. A
nonkey attribute does not uniquelyidentify aninstanceof anentity. For example, a
databasecanhave multipleinstances of the same customer name, which means that
“customer name” is not unique. "customer name" would probably bea nonkey
attribute.

Primary Key Selection

Choosingthe primarykey of an entity is animportant step that requires serious
consideration. Before you actually selecta primary key, consider several attributes,
which are referred to as candidate key attributes. Typically, the business user who
knows the business and business data can hel p identify candidate keys.

For example, to use the EMPLOYEE entity ina data model (andlaterina database)
correctly, you uniquelyidentify instances. In the customer table, you could choose from
several potential key attributes including:the employee name, a unique employee
number assignedto each instance of EMPLOYEE, ora group of attributes, such as name
and birth date.

28 Data Modeling Overview Guide

Primary Key Selection

The rules that you use to selecta primary key from the listofall candidatekeys are
stringent. The rules can be consistently applied acrossall types of databases and
information. The rules state that the attribute or attribute group must:

m Uniquelyidentify aninstance.
m Never includea NULL value.

m Not change over time. An instancetakes its identity from the key. If the key
changes, itis a different instance.

m Be asshortas possible, to facilitateindexingandretrieval.f you must use a key
thatis a combination of keys from other entities, verify that each part of the key
adheres to the other rules.

Example:

Consider which attribute you would select as a primary key from the followinglist of
candidatekeys foran EMPLOYEE entity:

m employee number

m employee name

m employee social security number

m employee birthdate

m employee bonus amount

Ifyou usethe rulesinthe preceding listto find candidate keys for EMPLOYEE, you could
compose the followinganalysis of each attribute:

m “employee number” is a candidate key becauseitis uniquefor all EMPLOYEEs

m “employee name” is probably nota good candidatebecause multiple employees
can have the same name, such as Mary Jones.

m “employee social security number” is uniquein most instances, butevery
EMPLOYEE may not have one.

m The combination of “employee name” and “employee birth date” may work, unless
there is more than one John Smith born on the same date and employed by our
company. This combination could be a candidate key.

m Onlysome EMPLOYEEs of our company are eligiblefor annual bonuses. Therefore,
“employee bonus amount” can be expected to be NULL in many cases.As a result, it
cannot be part of any candidate key.

Chapter 4: The Key-Based Data Model 29

Alternate Key Attributes

After analysis,there aretwo candidatekeys. One is “employee number” and the other is
the group of attributes containing “employee name” and “employee birth date.”
“employee number” is selected as the primary key becauseitis the shortest and helps
ensure uniqueness of instances.

When choosingthe primary key for an entity, data architects often assigna surrogate
key. A surrogatekey is anarbitrary number thatis assignedtoaninstanceto identify it
withinan entity uniquely. “employee number” is an example of a surrogatekey. A
surrogatekey is often the best choicefor a primary key. A surrogatekey is short, can be
accessed the fastest,and helps ensure unique identification of eachinstance. The
system can alsoautomatically generatesurrogate keys so that numbering is sequential
anddoes not includeany gaps.

A primary key chosen for the logical model is notalways the primary key used to access
the table efficientlyin a physical model. The primary key can be changed to suitthe
needs and requirements of the physical model and databaseat any point.

Alternate Key Attributes

After you selecta primarykey from a listof candidatekeys, designatesome or all of the
remaining candidate keys as alternate keys. Alternate keys are often used to identify the
different indexes, which areused to access the data quickly.Ina data model, an
alternate key is designated by the symbol (AKn). n is a number that is placed after the
attributes that form the alternate key group. In the EMPLOYEE entity, “employee name”
and “employee birth date” are members of the alternate key group.

EMPLOYEE

employee number

’Tn-;plnv,ree name (AK1)
em
employee hire date
employee SSN

<employee birth date (AK1] >

employee bonus amount

30 Data Modeling Overview Guide

Inversion Entry Attributes

Inversion Entry Attributes

Unlikea primary key or an alternate key, aninversion entry is an attribute or set of
attributes that arecommonly used to access an entity, but that may not resultin finding
exactly one instanceof an entity. Ina data model, the symbol IEnis placed after the
attribute.

For example, inaddition to locatinginformationinan employee databaseusingan
employee's identification number, a business may want to search by employee name.
Often, a name searchresults in multiplerecords, which requires an additional step to
find the exactrecord. By assigningan attributeto an inversion entry group, a
non-unique indexis created in the database.

Note: An attribute can belong to analternate key group as well as aninversion entry
group.

EMPLOYEE

employee number

employee name (AKL,IE1
emp

employee hire date
employee SSN

employee birth date (AK1)
employee bonus amount

Relationships and Foreign Key Attributes

A foreign key is the set of attributes that define the primarykey inthe parent entity. The
set of attributes migrates through a relationship fromthe parent to the child entity. Ina
data model, aforeign key is designated by the symbol (FK) after the attribute name.
Notice the (FK) next to “team id” inthe followingfigure:

TEAM PLAYER
team id pla','er. .
team id (FK)

Chapter 4: The Key-Based Data Model 31

Relationships and Foreign Key Attributes

Dependent and Independent Entities

As you develop your data model, you may discover certain entities that depend upon
the value of the foreign key attribute for uniqueness. For these entities, the foreign key
must be a part of the primary key of the child entity (above the line) to define each
entity uniquely.

Inrelational terms, a child entity that depends on the foreign key attribute for
uniqueness is named a dependent entity. In IDEF1X notation, dependent entities are
represented as round-cornered boxes.

Entities that do not depend on any other entity inthe model for identificationare
named independent entities. In [Eand IDEF1X, independent entities are represented as
square-cornered boxes.

TEAM PLAYER
team id plaver. d
team id (FK)

I I

Independent entity Dependent entity

Dependent entities are further classified as existence dependent, which means the
dependent entity cannot existunless its parentdoes, and identification dependent,
which means that the dependent entity cannotbe identified without usingthe key of
the parent. Because PLAYERs canexistif they arenot on a TEAM, the PLAYER entity is
identification-dependent, but not existence-dependent.

In contrast, there are situations wherean entity is existence-dependent on another
entity. Consider two entities: ORDER, which a business uses totrack customer orders,
and LINE ITEM, which tracks individual items inan ORDER. The relationship between
these two entities can be expressed as An ORDER <contains>one or more LINE ITEMS.
Inthis case, LINE ITEM is existence-dependent on ORDER, becauseit makes no sensein
the business context to track LINE ITEMS unless there is a related ORDER.

32 Data Modeling Overview Guide

Relationships and Foreign Key Attributes

Identifying Relationships

In IDEF1X notation, the type of the relationship thatconnects two entities enforces the
concept of dependent andindependent entities. If you want a foreign key to migrate to
the key area of the child entity (and create a dependent entity as a result), you can
create an identifyingrelationship between the parent and child entities. Asolidline
connecting the entities indicates anidentifyingrelationship.In IDEF1X notation, the line
includes a dot on the end nearest to the child entity, as shown in the followingfigure:

TEAM PLAYER
team id plaver. L
team id (FK)

In |E notation, the lineincludes a crow's foot at the end of the relationship nearestto
the child entity:

TEAM PLAYER
team id pla','er. .
team id (FK)

Note: Standard IE notation does not includerounded corners on entities. Rounded
entity corners arean IDEF1X symbol included in |E notation to help ensure compatibility
between methods.

There are advantages to contributing keys to a child entity through identifying
relationships,such as making some physical system queries more straightforward.
However, there arealsomanydisadvantages.Some advanced relational theory suggests
that contribution of keys not occurinthis way. Instead, entity identificationis attained
through usingalogical handleor surrogate key that the system user does not see, in
addition to the entity's primary key. Data architects who are interested inthis relational
theory are encouraged to review the work of E. F. Codd and C. J. Date.

Chapter 4: The Key-Based Data Model 33

Relationships and Foreign Key Attributes

Nonidentifying Relationships

A nonidentifyingrelationship also connects a parententity to a child entity. But, when a
nonidentifyingrelationship connects two entities, the foreign key migrates to the
nonkey area of the child entity (below the line).

A dashed line connecting the entities indicates a nonidentifying relationship. fyou
connect the TEAM and PLAYER entities ina nonidentifyingrelationship, the “team id”
migrates to the nonkey as shownin the followingfigure:

TEAM PLAYER
team id . player id
team id [FK)
TEAM PLAYER
team id player id
team id (FK)

Because the migrated keys ina nonidentifyingrelationship arenotpart of the primary
key of the child, nonidentifyingrelationshipsdo notresultinany identification
dependency. Inthis case, PLAYER is considered anindependent entity, justlike TEAM.

However, the relationship canreflectexistencedependency if the business rulefor the
relationship specifies thatthe foreign key cannot be NULL (missing). If the foreign key
must exist, this implies thataninstanceinthe child entity can only existifan associated
parentinstancealso exists.

Note: Identifyingand nonidentifying relationshipsarenota feature of the IE
methodology. These relationshipsareincludedinyour diagramas asolid or dashed
relationship lineto help ensure compatibility between |E and IDEF1X methods.

34 Data Modeling Overview Guide

Relationships and Foreign Key Attributes

Rolenames

When foreign keys migrate from the parent entity ina relationship to the child entity,
they are servingtwo roles inthe model interms of stated business rules.To understand
both roles,itis helpful to rename the migrated key to show its rolein the child entity.
This name assigned to a foreign key attribute is known as a rolename. A rolename
declares a new attribute, whose name is intended to describe the business statement
embodied by the relationship thatcontributes the foreign key.

TEAM PLAYER

team id player id
player team id.team id [FK)

The foreign key attribute of “playerteam id.teamid” inthe PLAYER entity shows the
syntax for definingand displaying a rolename. The firsthalf (before the period)is the
rolename. The second halfis the original name of the foreign key, sometimes known as
the basename.

Once assignedto a foreign key, a rolename migrates across a relationship similar toany
other foreign key. For example, supposethat you extend the example to show which
PLAYERs have scoredinvarious games throughout the season.The “player team id”
rolename migrates to the SCORING PLAY entity (with any other primary key attributes in
the parent entity), as shown here:

TEAM PLAYER

team id player id
player team id.team id [FK)

SCORING PLAY

player id (FK)
player team id (FK)

Chapter 4: The Key-Based Data Model 35

Relationships and Foreign Key Attributes

Note: A rolename s also used to model compatibility with legacy data models where
the foreign key often had a different name from the primary key.

36 Data Modeling Overview Guide

Chapter 5: Naming and Defining Entities
and Attributes

In data modeling, and insystems development ingeneral, itis importantto select clear
and well thought out names for objects. The results of your efforts become aclear,
concise,and unambiguous model of a business area.

Naming standards and conventions areidentical for all types of logical models, including
both the Entity Relationship diagrams (ERD) and Key-based (KB) diagrams.

This section contains the followingtopics:

Entity and Attribute Names (see page 37)
Entity Definitions (see page 39)

Attribute Definitions (seepage 41)
Rolenames (see page 43)

Definitions and Business Rules (see page 44)

Entity and Attribute Names

The most importantrule to remember when namingentities is that entity names are
always singular.Singularentity names facilitatereadingthe model with declarative
statements. For example, “A FLIGHT <transports>zero or more PASSENGERs” and “A
PASSENGER <is transported by>one FLIGHT.” When you name an entity, you are also
namingeach instance. For example, each instance of the PASSENGER entity isan
individual passenger, not a set of passengers.

Attribute names are alsosingular. “person name,” “employee SSN,” “employee bonus
amount,” for example, arecorrectly named attributes. Naming attributes in the singular
helps to avoid normalization errors,such as representing more than one factwith a
singleattribute. The attributes “employee child names” or “start or end dates” are
plural,and highlighterrors in the attribute design.

Chapter 5: Naming and Defining Entities and Attributes 37

Entity and Attribute Names

A good ruleto use when namingattributes is to use the entity name as a prefix. The rule
here is:

m Prefixqualifies

m Suffixclarifies

Usingthis rule, you caneasilyvalidatethe design and eliminate many common design
problems. For example, inthe CUSTOMER entity, you can name the attributes
“customer name,” “customer number,” “customer address,”and soon. Suppose you
wanted to name an attribute “customer invoice number.” Use the ruleto verify that the
suffix “invoice number” tells you more about the prefix “customer.” Becauseit does not,
move the attribute to a more appropriatelocation, such asINVOICE.

” u

Sometimes itis difficultto give an entity or attribute a name without firstgivingita
definition. As a general principle, providing a good definition for an entity or attributeis
as importantas providinga good name. The ability to find meaningful names comes
with experience and a fundamental understanding of what the model represents.

Because the data model is a description of a business, itis bestto choose meaningful
business names wherever thatis possible.fthere is no business namefor an entity,
assigntheentity a name that fits its purpose in the model.

Synonyms, Homonyms, and Aliases

Not everyone speaks the samelanguage. Not everyone is always precisein the use of
names. Because names identify entities and attributes in a data model, verify that
synonyms are resolved so that they do not represent redundant data. Precisely define
names sothat each person who reads the model canunderstand which facts are
captured in which entity.

Select a name that clearly communicates a sense of what the entity or attribute
represents. For example, there is some difference among things named PERSON,
CUSTOMER, and EMPLOYEE. Although they canall representan individual, they have
distinctcharacteristics or qualities. Thebusiness user tells you whether PERSON and
EMPLOYEE aretwo different things, or simply synonyms for the same thing.

Select names carefully,and be wary of calling two different things by the same name.
For example, if a business area insists on callingits customers “consumers,” do not insist
on the customer name. Perhaps there is analias, orthereis a new “thing” thatis distinct
from, although similar to, another “thing.” Inthis case, perhaps CONSUMER is a
category of CUSTOMER that can participateinrelationships thatarenot availablefor
other categories of CUSTOMER.

You canenforce unique namingin the modeling environment. Unique naming avoids
the accidental use of homonyms, ambiguous names, or duplication of entities or
attributes inthe model.

38 Data Modeling Overview Guide

Entity Definitions

Entity Definitions

Descriptions

Definingthe entities inyour logical model is essential to the clarity of the model and
elaborates on the purpose of the entity. Definingentities also clarify which facts you
want to includeinthe entity. Undefined entities or attributes can be misinterpreted in
later modeling efforts, and possibly deleted or unified based on the misinterpretation.

Writing a good definition can be difficult. The best definitions arecreated usingthe
points of view of many different business users and functional groups within the
organization. Definitions thatcan pass thescrutiny of many disparateusers providea
number of benefits including:

m Clarityacrosstheenterprise
m Consensus abouta singlefacthavingasinglepurpose

m Easieridentification of categories of data

Most organizations and individuals develop their own conventions or standards for
definitions. Long definitions tend to take on a structure that helps the reader to
understand the “thing” thatis being defined. Some of these definitions can go on for
several pages (CUSTOMER, for example). Because IDEF1X and IE do not provide
standards for definitions, you can adoptthe followingitems as a basic standard for
definition structure:

m Description
m Business example

] Comments

A description mustbe a clear and concise statement that tells whether anobjectis oris
not the thingyou aretrying to define. Often such descriptions can befairlyshort.Be
careful, however, that the descriptionis nottoo general or uses terms that are not
defined. Here are a couple of examples, one of good qualityand one thatis
guestionable:

Example of good description:
A COMMODITY is something that has a valuethat can be determined inanexchange.
The preceding exampleis a good description. Becausesomeone is willingtotrade

something, you know that something is a COMMODITY. If someone gives you three
peanuts and a stick of gum for a marble, then you know thata marbleis a COMMODITY.

Chapter 5: Naming and Defining Entities and Attributes 39

Entity Definitions

Business Examples

Comments

Example of bad description:
A CUSTOMER is someone who buys something from our company.

The preceding example is not a good description. Becauseyou know that the company
alsosells products to other businesses, you can misunderstand the word “someone”.
The business mayalso wantto track potential CUSTOMERs, not simply customers who
have already bought something from the company. You canalso define “something”
more fully to describe whether the saleis of products, services, or some combination of
the two.

Providing typical business examples of the thing being defined is important, because
good examples help the reader understand a definition. Comments about peanuts,
marbles, or something related to your business can help a reader to understand the
concept of a COMMODITY. The definition states that a commodity has value.The
example can help to show that valueis not always measured in money.

You canalsoincludegeneral comments for a description. Comments canincludethe
followinginformation:

m The person responsiblefor the definition
m The sourceof the information for the definition
m The state of the definition, such as when the definition was lastchanged

For some entities, also explainhowitand a related entity or entity name differ. For
example, a CUSTOMER can be distinguished froma PROSPECT.

Definition References and Circularity

An individual definition can look good, but when viewed together they can be circular.
Without some care, circularity can happen with entity and attribute definitions.
Example:

m CUSTOMER: Someone who buys one or more of our PRODUCTs

m PRODUCT: Something we offer for saleto CUSTOMERs

When you define entities and attributes in your data model, itis importantthat you
avoidthese circular references.

40 Data Modeling Overview Guide

Attribute Definitions

Business Glossary Construction

A business glossary helps you usecommon business terms when definingan entity or
attribute.

Definition example:

“A CURRENCY-SWAP is acomplex agreement between two PARTYs where they agree to
exchange cash flows intwo different CURRENCYs over a timeframe. Exchanges canbe
fixed over the term of the swap, or may float. Swaps are often used to hedge currency
andinterest rate risks.”

Inthe precedingexample, defined terms within a definition arehighlighted. Usingthis
stylemakes it unnecessary to define terms each time they are used, because people can
lookthem up whenever needed.

Providing basedefinitions of common business terms that arenot entity or attribute
names and referring to these definitions isa goodidea. You canuse a glossary of
commonly used terms separatefrom the model. Common business terms are
highlighted with bold or italic font,as showninthe preceding example.

This strategy seems likeit canlead to going backand forth among definitions frequently.
The alternative, however, is to define each term completely every time itis used. When
internal definitions appear in many places, they must be maintained in many places.The
probability thata changeis applied to all of them at the same time is small.

Developing a glossary of common business terms can serve several purposes.Aglossary

canbecome the basefor modeling definitions,and individuallyitcan providesignificant
valueto the business to help people communicate.

Attribute Definitions

Definingall attributes clearlyisimportant,and the same rules apply. When you compare
anattribute to a definition, verify whether itfits well and is notincomplete.

Example:
accountopen date

The date on which the ACCOUNT was opened. A further definition of what “opened”
means is needed before the definitionis clear and complete.

Define attributes usingthe same basic structureas entity definitions. Attribute
definitions mustincludea description, examples,and comments. The definitions must
alsocontain, whenever possible,validation rules thatspecify which facts areaccepted
as validvalues for thatattribute.

Chapter 5: Naming and Defining Entities and Attributes 41

Attribute Definitions

Validation Rules

A validation rule identifies a set of values thatan attribute is allowed to take. A
validation ruleconstrains or restricts the domain of values thatare acceptable. Values
have meanings inboth anabstractanda business sense. For example, if “person name,”
is defined as the preferred form of address chosen by the PERSON, it is constrained to
the set of all character strings. You can define anyvalidation rules or valid values foran
attribute as a part of the attribute definition. You canassign these validationrules toan
attribute usinga domain. Supported domains includetext, number, datetime, and blob.

Definitions of attributes, such as codes, identifiers, or amounts, often are not good
business examples.Includinga description of the validation rules or valid values of the
attributeis a good idea. When you define a validationrule,itis better to go beyond
simply listingthevalues that an attribute can take. For example, you define the attribute
“customer status” as follows:

Customer status: A code that describes the relationship between the CUSTOMER and
our business. Validvalues:A, P, F, N.

The validation rulespecificationis nothelpful becauseitdoes not define what the codes
mean. You can better describethe validationruleusing atableorlistofvalues,suchas
is describedinthe followingtable:

Valid value Meaning

A: Active The CUSTOMER is currentlyinvolvedina
purchasingrelationship with our company.

P: Prospect Someone with whom we areinterested in
cultivatinga relationship, but with whom
we have no current purchasing
relationship.

F: Former The CUSTOMER relationship has lapsed.In
other words, there has been no saleinthe
past24 months.

N: No business accepted The company has decided that no
business relationships exist with this
CUSTOMER.

42 Data Modeling Overview Guide

Rolenames

Rolenames

When a foreign key is contributed to a child entity through arelationship,you can write
a new or enhanced definition for the foreign key attributes. The definition explains the
foreign key attribute usageinthe child entity. Assign a rolename to the definition,
especially when the same attribute is contributed to the same entity more than once.
Duplicated attributes can appearidentical, butbecause they serve two different
purposes, they cannot have the same definition.

Consider the following examplewhere FOREIGN EXCHANGE TRADE has two
relationshipsto CURRENCY.

CURRENCY
currency code [— — — "1
is ht
e — hﬂllg by FOREIGN EXCHANGE TRADE
Currency name | I
I I trade id
I I- bought currency code.currency code (FK)
is SGH by - = bought currency amount
L sold currency code.currency code (FK)
- -~ sold currency amount

The key of CURRENCY is “currency code,” which is the identifier of a valid CURRENCY
that you want to track. You cansee from the relationshipsthatone CURRENCY is
“bought by” and one is “sold by” a FOREIGN EXCHANGE TRADE.

You alsoseethat the identifier of the CURRENCY (the “currency code”) is used to
identify each of the two CURRENCYs. The identifier of the one thatis boughtis named
“bought currency code.” The identifier of the one thatis soldis named “sold currency
code.” The rolenames show that the attributes are not the same thing as “currency
code.”

Tradinga CURRENCY for the same CURRENCY at the same time and exchange rateis not
logical.Foragiventransaction,such as the instance of FOREIGN EXCHANGE TRADE,
"bought currency code” and “sold currency code” must be different. Providing different
definitions to the two rolenames captures the difference between the two currency

codes.

Attribute/Rolename Attribute Definition

currency code The unique identifier of a CURRENCY.

bought currency code The identifier (“currency code”) of the CURRENCY
bought by (purchased by) the FOREIGN EXCHANGE
TRADE.

Chapter 5: Naming and Defining Entities and Attributes 43

Definitions and Business Rules

sold currency code The identifier (“currency code”) of the CURRENCY sold
by the FOREIGN EXCHANGE TRADE.

The definitions and validations of the bought and sold codes are based on “currency
code.” “currency code” is known as a baseattribute.

IDEF1X standard dictates thatiftwo attributes with the same name migrate from the
same baseattribute to anentity, the attributes must be unified. The resultof unification
isasingleattribute migrated through two relationships. Because of the IDEF1X
standard, foreign key attributes are also automatically unified. If you do not want to
unify migrated attributes, you canrolename the attributes when you name the
relationship, intheRelationship Editor.

Definitions and Business Rules

Business rules area critical part of the data model. Business rules takethe form of
relationships, rolenames, candidate keys, defaults, and other modeling structures.
Modeling structures include generalization categories, referential integrity, and
cardinality. Business rulesarealso captured in entity and attribute definitions and
validationrules.

For example, a CURRENCY entity can be defined as follows:

The set of all valid currencies recognized anywhere in the world, or a subset of these that
our company has decided to use in its day to day business operations.

The entity definition contains a subtle, but important distinction. In thelatter case,
there is a business rule, or policy statement, involved. This rule manifests itselfin the
validation rules for “currency code.” This rulerestricts the valid values for “currency
code” to the values used by the business. Maintenance of the business rule becomes a
task of maintainingthe table of valid values for CURRENCY. To permit or prohibittrading
of CURRENCYs, you simply createor delete instances inthe table of valid values.

The attributes “bought currency code” and “sold currency code” aresimilarly restricted.
However, both arefurther restricted usinga validationrulethatsays “bought currency
code” and “sold currency code” cannot be equal. Therefore, each is dependent on the
value of the other inits actual use.Validationrules can beaddressed inthe definitions
of attributes, and can also be defined explicitly usingvalidation rules, defaultvalues, and
validvaluelists.

44 Data Modeling Overview Guide

Chapter 6: Relationships

Relationshipsarea bitmore complex than they seem at first. Relationshipscarry
information that describes the rules of the business and the constraints on creating,
modifying, and deleting instances. For example, you can use cardinality to define how
many instances areinvolvedin both the child and parententities in the relationship. You
canalsospecify howyou want to handledatabaseactions such as INSERT, UPDATE, and
DELETE usingreferential integrity rules.

Data modeling also supports highly complex relationship types. Relationship types let
you constructa logical model of your data that is understandableto both business and
systems experts.

This section contains the followingtopics:

Relationship Cardinality (see page 45)
Referential Integrity (see page 49)
Additional Relationship Types (see page 55)

Relationship Cardinality

The many ina one-to-many relationship does notmean that there must be more than
one instanceofthe child connected to a parent. The many in one-to-many really means
that there arezero, one, or more instances of the child paired up to the parent.

Cardinality is the relational property that defines exactly how many instances appearin
achildtablefor each correspondinginstanceinthe parent table. IDEF1X and IEdiffer in
the symbols that areused to specify cardinality. However, both methods provide
symbols to denote one or more, zero or more, zero or one, or exactly N, as explainedin
the followingtable:

Cardinality Description IDEF1X Notation Identifying IE Notation Identifying
Nonidentifying Nonidentifying

Oneto zero, one, or more

[

Chapter 6: Relationships 45

Relationship Cardinality

Cardinality Description IDEF1X Notation Identifying IE Notation Identifying
Nonidentifying Nonidentifying

One to one or more

[
R

One to zero orone

.N
R

Zero or one to zero, one, or more <>
(nonidentifying only) : .

Zero or one to zero or one <> .
(nonidentifying only) : 6
:Z '
[

Cardinality lets you specify additional businessrules thatapply to the relationship.In the
followingfigure, the business has decided to identify each MOVIE COPY based on both
the foreign key “movie-number” and a surrogatekey “copy-number.” Also,each MOVIE
isavailableas oneor more MOVIE COPYs. The business has also stated thatthe
relationshipisidentifying, that MOVIE COPY cannot existunless there is a corresponding
MOVIE.

MOVIE MOVIE COPY

movie number (FK)
is available as movie copy number

'\)

movie number

46 Data Modeling Overview Guide

Relationship Cardinality

The MOVIE/MOVIE COPY model also specifies the cardinality for the relationship. The
relationship lineshows thatthere is exactly one MOVIE, and only one, participatingina
relationship. MOVIEis the parentinthe relationship.

By making MOVIE COPY the childinthe relationship, thebusiness defined a MOVIE
COPY as one of several rentable copies of a movie title. The business also determined
thatto be includedinthe database,a MOVIE must have atleastone MOVIE COPY.
Therefore, the cardinality of the is available as relationship is one-to-one or more. The P
symbol next to the dot represents cardinality of one or more. As a result, you also know
that a MOVIE with no copiesis nota legitimate instancein this database.

In contrast, the business may want to know about all of the MOVIEs inthe world, even
MOVIEs for which they have no copies.So their business ruleis thatfora MOVIE to exist
(be recorded intheir information system) there can be zero, one, or more copies.To
record this business rule, the P is removed. When cardinalityis notexplicitly indicated in
the diagram, cardinality is one-to-zero, one, or more.

Cardinality in Nonidentifying Relationships

Nonidentifying relationships contribute keys from a parent to a child entity. However,
by definition, some (or all) of the keys do not become part of the key of the child.This
means that the childis notidentification-dependent on the parent. There canalsobe
situations wherean entity atthe many end of the relationship can existwithouta
parent, or existence-dependent.

Ifthe relationshipis mandatory from the perspective of the child, then the childis
existence-dependent on the parent. If itis optional, the childis neither existence or
identification-dependent with respect to that relationship (althoughitmay be
dependent in other relationships). Toindicatethe optional case, IDEF1Xincludes a
diamond at the parent end of the relationshiplineand IEincludes a circle.

PASSENGER SEAT
passenger id may occupy seat number
passengername |~ Z) passenger id (FK)
PASSENGER SEAT
passenger id DME‘VO'DEUWEH seat number
passenger name passenger id [FK)

Chapter 6: Relationships 47

Relationship Cardinality

Inthe precedingexamples, the attribute “passengerid” is a foreign key attribute of
SEAT. Because the “passenger id” does not identify the SEAT but identifies the
PASSENGER occupyingthe SEAT, the business has determined that the relationshipis
nonidentifying. The business has also stated that the SEAT can existwithout any
PASSENGER, sothe relationshipisoptional. Whena relationshipisoptional, the diagram
includes either a diamondin IDEF1X, or acircleinIEnotation. Otherwise, the cardinality
graphics for nonidentifying relationships arethesame as for identifying rel ationships.

The cardinality for the relationshipis indicated witha ZinIDEF1X and a singlelinein IE.
The cardinality states that a PASSENGER <may occupy> zero or one of these SEATs on a
flight. Each SEAT can be occupied, in which casethe PASSENGER occupyingthe seatis
identified using “passengerid.” It canalso be unoccupied, in which casethe “passenger
id” attribute is empty (NULL).

48 Data Modeling Overview Guide

Referential Integrity

Referential Integrity

Because a relational databaserelies on data values to implement relationships, the
integrity of the datainthe key fields is important. For example, ifyou change a valuein
a primary key column of a parent table, reflect this change ineach child table where the
column appears as a foreign key. The actionthatis appliedtothe foreign key value
varies depending on the rules defined by the business.

For example, a business thatmanages multiple projects might track its employees and
projects ina model similar tothe oneinthe followingexample. The business has
determined that the relationship between PROJECT and PROJECT EMPLOYEE is
identifying, sothe primary key of PROJECT becomes a part of the primary key of
PROJECT EMPLOYEE.

EMPLOYEE

employee id

is assigned to

PROJECT

project id

has as project members

|

PROJECT EMPLOYEE

project id (FK)

ramplavee id (FK)

/

start date
end date

Chapter 6: Relationships 49

Referential Integrity

The business also decides thatfor each instance of PROJECT EMPLOYEE there is exactly
one instanceof PROJECT, which indicates PROJECT EMPLOYEE is existence-dependent
on PROJECT.

What would happen if you were to delete an instance of PROJECT? Ifthe business does
not want to track instances in PROJECT EMPLOYEE if PROJECT is deleted, delete all
instances of PROJECT EMPLOYEE thatinherited partof their key from the deleted
PROJECT.

The rule that specifies the action taken when a parent key is deleted is known as
referential integrity. The referential integrity option chosen for this actionin this
relationshipis Cascade.Each time an instance of PROJECT is deleted, this Delete
cascades tothe PROJECT EMPLOYEE table. The Delete actionalso deletes all related
instances in PROJECT EMPLOYEE.

Availableactionsfor referential integrity include the following:
Cascade

Ifaninstanceinthe parent entity is deleted, eachrelated instanceinthe child
entity mustalso bedeleted.

Restrict
Deletion of an instanceinthe parent entity is prohibited if the followingis true:
m Oneor more related instances in the child entity exist.

m Deletion of aninstanceinthe child entity is prohibited if there is a related
instanceinthe parent entity.

Set Null

Ifaninstanceinthe parent entity is deleted, the foreign key attributes ineach
related instanceinthe child entity are set to NULL.

Set Default

Ifaninstanceinthe parent entity is deleted, the foreign key attributes ineach
related instancein the child entity are set to the specified defaultvalue.

<None>

No referential integrity actionis required. Not every action must have a referential
integrity ruleassociated with it. For example, a business may decidethat referential
integrity is not required when deleting aninstanceina child entity. This business
ruleis valid where the cardinalityis zero, one to zero, or one or more, because
instances inthe child entity canexist even if there areno related instances in the
parent entity.

50 Data Modeling Overview Guide

Referential Integrity

Although referential integrity is nota formal partof the IDEF1X or IE languages, itdoes
capture business rules thatindicate how the completed databaseworks. Referential
integrity is a critical part of data modeling and provides a method for both capture and
display of referential integrity rules.

Once referential integrity is defined, the facilitator or analysttests the referential
integrity rules defined by the business users.The facilitator or analystasks questions or
works through different scenariosthatshow the results of the business decision. When
the requirements are defined and fully understood, specific referential integrity actions,
such as Restrict or Cascade can be recommended.

Referential Intedrity Options

Referential integrity rules vary depending on:
m Whether or not the entity is a parent or childintherelationship

m The databaseactionthatis implemented

As aresult, ineach relationship there aresix possibleactions for which referential
integrity can be defined:

® PARENT INSERT
m PARENT UPDATE
m PARENT DELETE
m CHILD INSERT
= CHILD UPDATE
m CHILD DELETE

Chapter 6: Relationships 51

Referential Integrity

The following figureshows referential integrity rules inthe EMPLOYEE-PROJECT model:

EMPLOYEE PROJECT
employes-id project-id

D:C| s assigned to has as project members |D:C
u:.C IR R u:c

u;% ‘U:R

PROJECT-EMPLCYEE
employee-id (FK)
project-id (FK)

start-date
end-date

The referential integrity rules captured inthe figure showthe business decision to
cascadealldeletions inthe PROJECT entity to the PROJECT-EMPLOYEE entity. This ruleis
called PARENT DELETE CASCADE, andis noted inthe figure by the letters D:C placed at
the parent end of the specified relationship. The firstletter in the referential integrity
symbol always refers to the databaseaction:I(Insert), U(Update), or D(Delete). The

second letter refers to the referential integrity option: C(Cascade), R(Restrict), SN(Set
Null), and SD(Set Default).

Inthe figure, no referential integrity option was specified for PARENT INSERT, so
referential integrity for insert(l:) is not displayed on the diagram.

52 Data Modeling Overview Guide

Referential Integrity

RI, Cardinality, and Identifying Relationships

Inthe figurebelow, the relationship between PROJECT and PROJECT-EMPLOYEE s
identifying. Therefore, the valid options for referential integrity for the parententity in
the relationship, PROJECT, include Cascadeand Restrict:

EMPLOYEE PROJECT
employee-id project-id

D:C| s assigned to has as project members |D:C
u:C IR R u:c

”"“ ‘U:R

FROJECT-EMPLOYEE
emplovee-id (FK)
project-id (FK)

start-date
end-date

Cascadeindicates thatall instances of PROJECT-EMPLOYEE that are affected by the
deletion of aninstance of PROJECT should also bedeleted. Restrictindicates thata
PROJECT cannot be deleted until all instances of PROJECT-EMPLOYEE that have
inherited its key have been deleted. If there are anyleft, the Delete is restricted.

Onereasonto restrictthe deletion might be that the business needs to know other facts
about a PROJECT-EMPLOYEE suchas the date started on the project. Ifyou Cascadethe
Delete, you losethis supplementary information.

When you update an instancein the parent entity, the business has also determined
that the updated information should cascadeto the related instances in the child entity.

As you cansee inthe example, different rules apply when an instanceis inserted,
updated, or deleted inthe child entity. When aninstanceis inserted, for example, the
actionis setto Restrict. This ruleappears as I:R placed next to the child entity in the
relationship. This means thataninstancecan be added to the child entity only ifthe
referenced foreign key matches an existinginstanceinthe parent entity. So, you can
inserta new instancein PROJECT-EMPLOYEE only ifthe valueinthe key field matches a
key valueinthe PROJECT entity.

Chapter 6: Relationships 53

Referential Integrity

RI, Cardinality, and Non-Identifying Relationships

If the business decides that PROJECT-EMPLOYEEs are not existence- or
identification-dependent on PROJECT, you can change the relationship between
PROJECT and PROJECT-EMPLOYEE to optional, non-identifying. In this type of
relationship, thereferential integrity options are very different:

EMPLOYEE PROJECT
Employes-id project-id
‘ i5 assigned to has as project members?
o T 2.

&
FROJECT-EMPLOYEE
| employee-id (FK) |
project-id (Fk)

start-date
end-date

Sincea foreign key contributed across a non-identifyingrelationshipis allowed to be
NULL, one of the referential integrity options you can specify for PARENT DELETE is Set
Null.Set Null indicates thatifan instance of PROJECT is deleted, then anyforeign key
inherited from PROJECT in a related instancein PROJECT-EMPLOYEE should be set to
NULL. The Delete does not cascadeasinour previous example, anditis notprohibited
(asinRestrict). The advantage of this approachis thatyou can preserve the information
about the PROJECT-EMPLOYEE while effectively breakingthe connection between the
PROJECT-EMPLOYEE and PROJECT.

Use of Cascadeor Set Null should reflectbusiness decisions about maintainingthe
historical knowledge of relationships, represented by the foreign keys.

54 Data Modeling Overview Guide

Additional Relationship Types

Additional Relationship Types

As you develop a logical model, you may find some parent/child relationshipsthatdo
not fall into the standard, one-to-many relationships. Theserelationship exceptions
include:

Many-to-many relationships

A relationship where one entity <owns> many instances of a second entity, and the
second entity also <owns> many instances of the firstentity. For example, an
EMPLOYEE <has>one or more JOB TITLEs, and a JOB TITLE <is applied to>one or
more EMPLOYEEs.

N-ary relationships

A simpleone-to-many relationship between two entities is termed binary. When a
one-to-many relationship exists between two or more parents anda singlechild
entity, itis termed an n-ary relationship.

Recursive relationships

Entities that have a relationship to themselves take partinrecursiverelationships.
For example, for the EMPLOYEE entity, you couldincludea relationship to show
that one EMPLOYEE <manages> one or more EMPLOYEEs. This type of relationship
is alsoused for bill-of-materials structures, to show relationships between parts.

Subtype relationships

Related entities are grouped together sothatall common attributes appearina
singleentity, but all attributes thatare notin common appear inseparate, related
entities. For example, the EMPLOYEE entity could be subtyped into FULL-TIME and
PART-TIME.

Many-to-Many Relationships

In key-based and fully-attributed models, relationships mustrelate zero or one
instances ina parententity to a specific setof instances ina child entity. As a result of
this rule, many-to-many relationshipsthatwere discovered and documented inan ERD
or earlier modeling phasemust be broken down into a pair of one-to-many
relationships.

STUDENT COURSE

student-id course-id

student-narne COUFSe-Name

This figure shows a many-to-many relationship between STUDENTs and COURSEs. Ifyou
did not eliminatethe many-to-many relationship between COURSE and STUDENT, the
key of COURSE would be includedinthe key of STUDENT, andthe key of STUDENT
would be includedinthe key of COURSE. Since COURSEs areidentified by their own
keys, and likewisefor STUDENTSs this, creates anendless loop.

Chapter 6: Relationships 55

Additional Relationship Types

You caneliminatea many-to-many relationship by creatingan associative entity. In the
followingfigure, the many-to-many relationship between STUDENT and COURSE is
resolved by adding the COURSE-ROSTER entity.

STUDENT COURSE
student-id

course-id

COUrse-name

student-name

COURSE-ROSTER
student-id (FK)
course-id (FIK)

STUDENT COURSE

student-id course-id

student-narme

course-name

course-time

COURSE-ROSTER is anassociative entity, which means itis used to define the
association between two related entities.

Many-to-many relationships often hide meaning. Inthe diagramwith a many-to-many
relationship, you know that a STUDENT enrolls in many COURSEs, but no informationis
included to show how. When you resolve the many-to-many relationship, you see not
only how the entities are related, but uncover additionalinformation, such as the
“course-time,” which also describes facts aboutthe relationship.

Once the many-to-many relationshipisresolved, you arefaced with the requirement to
includerelationship verb phrases thatvalidatethe structure. There aretwo ways to do
this:constructnew verb phrases or use the verb phrases as they existed for the
many-to-many relationship. The most straightforward wayis to continue to read the
many-to-many relationship, through the associative entity. Therefore, you canread A
STUDENT <enrolls in>many COURSEs and A COURSE <is taken by> many STUDENTs.
Many modelers adopt this stylefor constructingand readinga model.

There is another style, whichis equally correct, but a bitmore cumbersome. The
structure of the model is exactly the same, but the verb phrases aredifferent, and the
model is readin aslightly differentway:

STUDENT COURSE

student-id course-id

student-name COUrse-name
enrolls in a| | is taken by
COURSE a STUDENT
recorded in recorded in

COURSE-ROSTER
student-id (FI)
course-id [FK)

| course-tirne é

56 Data Modeling Overview Guide

Additional Relationship Types

You would read: A STUDENT <enrollsina COURSE recorded in>one or more
COURSE-ROSTERs, and A COURSE <is taken by a STUDENT recorded in>one or more
COURSE-ROSTERs.Although the verb phrases arenow quite long, the readingfollows the
standard pattern; readingdirectly from the parent entity to the child.

Whichever styleyou choose, be consistent. Deciding how to record verb phrases for
many-to-many relationships is nottoo difficultwhen the structures are fairly simple, as
inthese examples. However, this can become more difficult when the structures
become more complex, such as when the entities on either side of the associative
entities arethemselves associative entities, which are there to represent other
many-to-many relationships.

N-ary Relationships

When a single parent-child relationship exists, the relationshipis called binary. All of the
previous examples of relationshipsto this pointhave been binaryrelationships.
However, when creating a data model, itis notuncommon to come across n-ary
relationships, the modeling name for relationships between two or more parent entities
anda singlechildtable. An example of an n-ary relationshipisshowninthe following

figure:

COMPANY PRODUCT CUSTOMER
company-id product-id customer-id
company-name product-name customer-name

is purchesed by
sells signs

CONTRACT

company-id (FK)
product-id {FK)

customer-id (FE)

contract-detail

Chapter 6: Relationships 57

Additional Relationship Types

Like many-to-many relationships, three-, four-, or n-aryrelationshipsarevalid
constructs in entity relationship diagrams. Also like many-to-many relationships, n-ary
relationshipsshould beresolvedin later models usinga set of binaryrelationships toan
associativeentity.

If you consider the business rulestated in the figure, you can see that a CONTRACT
represents a three-way relationship among COMPANY, PRODUCT, and CUSTOMER. The
structure indicates that many COMPANYs sell many PRODUCTs to many CUSTOMERs.
When you see a relationship like this, however, there are business questions thatshould
be answered. For example, “Must a productbe offered by a company before it can be
sold?” “Can a customer establish a singlecontractincluding products fromseveral
different companies?”and, “Do you need to keep track of which customers 'belong to'
which companies?” Depending on the answers, the structures may change.

For example, if a product must be offered by a company before it can be sold, then you
would have to change the structure as follows:

COMPANY PRODUCT CUSTOMER
company-id product-id customer-id
company-name product-name customer-name
offers
s0ld in signs
CONTRACT

FEODUCT-OFFERING

company-id (FK) -)
. pany-id (FK)
product-id (FK) purchased on oroduct-d (FK)

| contract-detail

customer-id (FK)

Since PRODUCTs must be offered by COMPANYs, you cancreate anassociativeentity to
capture this relationship. As a result, the original three-way relationship to CONTRACT is
replaced by two, two-way relationships.

By askinga variety of business questions, itis likely thatyou will find thatmost n-ary
relationshipscanbebroken down intoa series of relationshipsto associativeentities.

58 Data Modeling Overview Guide

Additional Relationship Types

Recursive Relationships

An entity can participateinarecursiverelationship (also called fishhook) where the
same entity is both the parent andthe child. This relationshipisanimportantone when
modeling data originally storedin legacy DBMSs such as IMS or IDMS that use recursive
relationshipstoimplement bill of materialsstructures.

For example, a COMPANY can be the parent of other COMPANYs. As with all
non-identifying relationships, thekey of the parent entity appears inthe data area of
the child entity. See the followingfigure:

COMPANY

company id

company name

parent id.company id (FK) l————___l
I

I

Y i

I

| |

| parentof |

The recursiverelationship for COMPANY includes the diamond symbol to indicatethat
the foreign key canbe NULL, suchas when a COMPANY has no parent. Recursive
relationships mustbe both optional (diamond) and non-identifying.

The “company-id” attribute is migrated through the recursiverelationship,and appears
inthe example with the rolename “parent-id.” There are two reasons for this.First,as a
general designrule, anattribute cannot appear twice inthe same entity under the same
name. Thus, to complete a recursiverelationship, you must provide a rolename for the
migrated attribute.

Second, the attribute “company-id” in the key, whichidentifies eachinstance of
COMPANY, is not the same thing as the “company-id” migrated through the
relationship, which identifies the parent COMPANY. You cannotuse the same definition
for both attributes, so the migrated attribute must be rolenamed. An example of
possibledefinitions follows:

company-id
The unique identifier of a COMPANY.
parent-id

The “company-id” of the parent COMPANY. Not all COMPANYs have a parent
COMPANY.

Chapter 6: Relationships 59

Additional Relationship Types

If you create a sampleinstancetable, such as the one that follows, you cantest the rules
inthe relationship to ensure that they are valid.

COMPANY

company-id parent-id company-name

Cc1 NULL Big Monster Company

C2 C1 Smaller Monster Company
Cc3 Cc1 Other Smaller Company
c4 Cc2 Big Subsidiary

Cc5 Cc2 Small Subsidiary

Ccé6 NULL Independent Company

The sampleinstancetableshows that Big Monster Company is the parent of Smaller
Monster Company and Other Smaller Company. Smaller Monster Company, inturn, is
the parent of Big Subsidiary and Small Subsidiary. Independent Company is not the
parent of any other company and has no parent. Big Monster Company also has no
parent. Ifyou diagramthis information hierarchically, you canvalidatethe information
inthe table, as shown inthe figure below:

Independent Company Big Monster Company
Ch 1
Small Monster Company Other Small Company
c32 C3
Eig Subsidiary c4 Small Subsidiary €5

60 Data Modeling Overview Guide

Additional Relationship Types

Subtype Relationships

A subtype relationship, alsoreferred to as a generalization category, generalization
hierarchy, orinheritancehierarchy,is a way to group a set of entities that share
common characteristics. For example, you might find during a modeling effort that
several different types of ACCOUNTSs existina bank suchas checking,savings,andloan
accounts,as showninthe figure below:

CHECKING-ACCOUNT

SAYVINGE-ACCOUNT

LOAN-ACCOUNT

checking-account-number

savings-account-number

|oan-number

checking-open-date
checking-review-date
checking-halance
available-balance
per-check-charge

sawings-open-date
savings-review-date
savings-nalance
interest-rate
interest-earned

Ipan-open-date
loan-review-date
original-loan-amount
|oan-interest-rate
current-loan-halance

When you recognize similaritiesamongthe different independent entities, you may be
ableto collectattributes common to all three types of accounts into a hierarchical
structure.

You can move these common attributes into a higher level entity called the supertype
entity (or generalization entity). Those that arespecific tothe individual accounttypes
remainin the subtype entities. In this example, you cancreate a supertype entity called
ACCOUNT to represent the informationthatis common across thethree types of
accounts.The supertype ACCOUNT includes a primary key of “account-number.”

Three subtype entities, CHECKING-ACCOUNT, SAVINGS-ACCOUNT, and LOAN-ACCOUNT,

are added as dependent entities that arerelated to ACCOUNT usinga subtype
relationship.

The resultis a structure likethe one shown in the figure below:

ACCOUNT

account-type

CHECKING-ACCOUNT][SA\ANGS—ACCOUNT][LDAN-ACCOUNT

Chapter 6: Relationships 61

Additional Relationship Types

In this figure, an ACCOUNT is either a CHECKING-ACCOUNT, a SAVINGS-ACCOUNT, ora
LOAN-ACCOUNT. Eachsubtype entity isan ACCOUNT andinherits the properties of
ACCOUNT. The three different subtype entities of ACCOUNT aremutually exclusive.

Inorder to distinguish onetype of ACCOUNT from another, you can add the attribute
“account-type” asthe subtype discriminator. Thesubtype discriminatoris anattribute
of the category supertype (ACCOUNT) andits valuewill tell you which type of ACCOUNT
itis.

Once you have established the subtype relationship, you can examine each attribute in
the original model,inturn, to determine ifit should remainin the subtype entities, or
move to the supertype. For example, each subtype entity has an “open-date.” Ifthe
definitions of these three kinds of “open-date” are the same, you can move them to the
supertype, and drop them from the subtype entities.

You must analyzeeach attribute inturn to determine ifit remains in the subtype entity
or moves to the supertype entity. Inthose cases where a singleattribute appearsinonly
some of the subtype entities, you face a more difficultdecision. You can either leave the
attribute with the subtype entities or move the attribute up to the supertype. If this
attribute appearsinthe supertype, the valueof the attribute in the supertype will be
NULL when the attribute is notincludedinthe correspondingsubtype entity.

After analysis, theresulting model might appear as follows:

ACCOUNT
account-id

account-type
account-open-date
account-review-date

(J)account—type

I |
CHECKING-ACCOUNT SAVINGE-ACCOUNT LOAN-ACCOUNT

account-id (FK) | | account-id (FK) | | account-id (FI) |
checking-halance savings-balance arigina-loan-date
available-balance interest-rate loan-interest-rate
per-check-charge interest-earned current-loan-halance

62 Data Modeling Overview Guide

Additional Relationship Types

When developinga subtype relationship,you mustalso beaware of any specific
business rules thatyou need to impose at the subtype level that are not pertinent to
other subtypes of the supertype. For example, LOAN accounts aredeleted after they
reach a zero balance. You would not want to delete CHECKING and SAVINGS accounts
under the same conditions.

There can also berelationships thatare meaningful to a singlesubtype and not to any
other subtype inthe hierarchy. For example, the LOAN entity needs to be examined, to
ensure that any previous relationshipsto records of customer payments or assets are
not lostbecause of a different organizational structure.

Complete Compared to Incomplete Subtype Structures

In IDEF1X, different symbols areused to specify whether or not the set of subtype
entities ina subtype relationshipis fully defined. An incomplete subtype indicates that
the modeler feels there may be other subtype entities that have not yet been
discovered. An incomplete subtype is indicated by a single line atthe bottom of the
subtype symbol, as showninthe figure below:

EMPLOYEE
employee-number

emmployee-name
employee-gender
employee-type

employee-type

| I
CONSULTANT FULL-TIME-EMPLOYEE

|emp|0yee—number (FK) | |emp|oyee—number(FK) |
‘hourly—rate | ‘full—time-emplwee—type |

Chapter 6: Relationships 63

Additional Relationship Types

A complete subtype indicates thatthe modeler is certainthat all possiblesubtype
entities areincludedinthe subtype structure. For example, a complete subtype could
capture information specific to maleand female employees, as shown inthe figure
below. A complete subtype is indicated by two lines at the bottom of the subtype
symbol.

EMPLOYEE
employee-number

emmployee-name
employes-gender
employee-type

g ?employee—gender

| |
WALE-EMPLOYEE FEMALE-EMPLOYEE
| employas-number (FK) | | employes-number (FK) |

| ‘ ‘ maiden-name ‘

When you create a subtype relationship, itis a goodrule to alsocreate a validationrule
for the discriminator. This helps to ensure that all subtypes have been discovered. For
example, a validation rulefor “account-type” might include: C=checking account,
S=savings account, L=loans. Ifthe business also has legacy data with accounttypes of
“0,” the validation rule uncovers the undocumented type and lets you decide if the “O”
is a symptom of poor designinthe legacysystem or a real accounttype that you forgot.

Inclusive and Exclusive Relationships

Unlike IDEF1X, |IE notation does not distinguish between complete and incomplete
subtype relationships. Instead, |IE notation documents whether the relationshipis
exclusive or inclusive. However, IDEF1X notation distinguishes between complete and
incomplete; exclusiveandinclusive.

Inan exclusivesubtyperelationship,eachinstanceinthe supertype canrelate to one
andonly one subtype. For example, you might model a business rulethatsaysan
employee can be either a full-time or part-time employee but not both. To create the
model, you canincludean EMPLOYEE supertype entity with FULL-TIME and PART-TIME
subtype entities and a discriminator attribute called “employee-status.” Inaddition, you
canconstrain the value of the discriminator to showthat valid values foritinclude Fto
denote full-timeand P to denote part-time.

64 Data Modeling Overview Guide

Additional Relationship Types

Inaninclusivesubtyperelationship,eachinstanceinthe supertype canrelate to one or
more subtypes. In our example, the business rule might now state that an employee
could be full-time, part-time, or both. In this example, you can constrain the value of the
discriminator to showthat valid values foritinclude Fto denote full-time, P to denote
part-time, and B to denote both full-timeand part-time.

Note: InIDEF1X notation, you canrepresent inclusive subtypes by drawinga separate
relationship between the supertype entity and each subtype entity.

IDEF1X and IE Subtype Notation

The followingillustrates subtype notationin IDEF1Xand IE:

IDEF1X Subtype Notation IE Subtype Notation

Complete Incomplete

Exclusive
Subtype N
1 L

Inclusive [T [1
O C e

Chapter 6: Relationships 65

Additional Relationship Types

When to Create a Subtype Relationship

You shouldcreatea subtype relationship when:

m Entities sharea common set of attributes. This was the casein our previous
examples.

m Entities sharea common set of relationships. This has notbeen explored but,
referring back to the account structure, you can, as needed, collectany common
relationshipsthatthe subtype entities had into a singlerelationship fromthe
generic parent. For example, ifeach accounttype is related to many CUSTOMERs,
you canincludea singlerelationship atthe ACCOUNT level, and eliminatethe
separaterelationshipsfromthe individual subtypeentities.

m Business model demands that the subtype entities should be exposed ina model
(usually for communication or understanding purposes) even if the subtype entities
have no attributes that are different, and even ifthey participateinno relationships
distinctfromother subtype entities. Remember that one of the major purposes of a
model is to assistin communication of information structures,and if showing
subtype entities assists communication, then show them.

66 Data Modeling Overview Guide

Chapter 7: Normalization Problems and
Solutions

This section contains the followingtopics:

Normalization (see page 67)

Overview of the Normal Forms (see page 68)
Common Design Problems (see page 69)
Unification (see page 79)

How Much Normalization Is Enough (see page 80)
Support for Normalization (see page 82)

Normalization

Normalization, inrelational databasedesign,is the process by which data inarelational
constructis organized to minimize redundancyand non-relational constructs. Following
the rules for normalization, you can control and eliminatedata redundancy by removing
all model structures that provide multiple ways to know the same fact.

The goal of normalizationisto ensure that there is only one way to know a fact. A useful
slogan summarizingthis goal is:

ONE FACT IN ONE PLACE!

Chapter 7: Normalization Problems and Solutions 67

Overview of the Normal Forms

Overview of the Normal Forms

The following arethe formal definitions for the most common normal forms.
Functional Dependence (FD)

Given an entity E, attribute B of E is functionally dependent on attribute A of E if
andonlyifeachvalue of AinE has associated withitpreciselyonevalueof BinE
(atanyone time). In other words, A uniquely determines B.

Full Functional Dependence

Given an entity E, an attribute B of E is fully functionally dependent on a set of
attributes A of E ifandonlyif Bis functionally dependent on A and not functionally
dependent on any proper subset of A.

First Normal Form (1NF)

An entity Eisin1NF ifandonlyifall underlyingvalues contain only atomicvalues.
Any repeating groups (that might be found inlegacy COBOL data structures, for
example) must be eliminated.

Second normal Form (2NF)

An entity Eisin2NF ifitisin 1NFand every non-key attribute is fully dependent on
the primary key. In other words, there are no partial key dependencies-dependence
is onthe entire key K of E and not on a proper subset of K.

Third Normal Form (3NF)

An entity Eisin3NFifitisin 2NFand no non-key attribute of E is dependent on
another non-key attribute. There are several equivalentways to express 3NF.
Another way is:An entity Eisin3NFifitisin2NF andevery non-key attributeis
non-transitively dependent on the primary key. A final wayis:An entity E isin3NFif
every attributeinE carries a factaboutall of E (2NF) and only about E (as
represented by the entity's entire key and only by that key). One way to remember
how to implement 3NF is usingthe following quip: “Each attribute relies on the

key, the whole key, and nothing but the key, so help me Codd!”

Beyond 3NF liethree more normal forms, Boyce-Codd, Fourth, and Fifth. In practice,
third normal formis the standard. At the level of the physical databasedesign, choices
are usually madeto denormalize a structure in favor of performance for a certain set of
transactions. This mayintroduceredundancyin the structure, but itis often worth it.

68 Data Modeling Overview Guide

Common Design Problems

Common Design Problems

Many common design problems are a resultof violating one of the normal forms.
Common problems include:

m Repeating data groups

m Multipleuse of the same attribute

m Multipleoccurrences of the same fact
m Conflictingfacts

m Derived attributes

m Missinginformation

When you work on eliminating design problems, the use of sampleinstancedata can be
invaluablein discovering many normalizationerrors.

Repeating Data Groups

Repeating data groups can be defined as lists, repeating elements, or internal structures
insidean attribute. This structure, although common inlegacy data structures, violates
firstnormal form and must be eliminatedinan RDBMS model. An RDBMS cannothandle
variable-length repeating fields becauseitoffers no ability to subscriptthrough arrays of
this type. The entity below contains a repeating data group, “children's-names.”
Repeating data groups violatefirstnormal form, which basically states thatan entity is
infirstnormal formif each of its attributes has a single meaningand not more than one
valuefor each instance.

Repeating data groups, as shown below, present problems when defininga databaseto
containthe actual data. For example, after designingthe EMPLOYEE entity, you are
faced with the questions, “How many children's names do you need to record?” “How
much spaceshouldyou leavein eachrow in the databasefor the names?” and “What
will youdo ifyou have more names than remainingspace?”

EMPLOYEE
employes-id

emplovee-name
employee-address
children's names

Chapter 7: Normalization Problems and Solutions 69

Common Design Problems

The followingsampleinstancetable might clarify the problem:

EMPLOYEE

emp-id emp-name emp-address children's-names
El Tom Berkeley Jane

E2 Don Berkeley Tom, Dick, Donna
E3 Bob Princeton -

E4 John New York Lisa

E5 Carol Berkeley -

Inorder to fix the design, itis necessaryto somehow remove the listofchildren's names
from the EMPLOYEE entity. One way to do thisis to adda CHILD table to containthe
information aboutemployee's children, as follows:

EMF‘LOYEE. CHLD
emplovee-id childid
employee-name has employee-id (FK)
employee-address ,

Lchnd—name J

Oncethatis done, you canrepresent the names of the children as singleentries inthe
CHILD table. Interms of the physicalrecord structurefor employee, this canresolve
some of your questions about spaceallocation, and prevent wastingspacein the record
structure for employees who have no children or, conversely, decidinghow much space
to allocate for employees with families.

The followingtables arethe sampleinstancetables for the EMPLOYEE-CHILD model:

EMPLOYEE

emp-id emp-name emp-address
El Tom Berkeley

E2 Don Berkeley

E3 Bob Princeton

E4 Carol Berkeley

70 Data Modeling Overview Guide

Common Design Problems

CHILD

emp-id child-id child-name
E2 C1 Tom

E2 c2 Dick

E2 C3 Donna

E4 C1 Lisa

This change makes the firststep toward a normalized model; conversionto firstnormal
form. Both entities now contain only fixed-length fields, which areeasy to understand

and program.

Multiple Use of the Same Attribute

Itisalsoa problemwhen asingleattributecan represent one of two facts,and there is
no way to understand which factitrepresents. For example, the EMPLOYEE entity
contains the attribute “start-or-termination-date” where you canrecord this
information for an employee as follows:

EMPLOYEE

employee-id

employes-name
employes-address
start-or-termination-date

The followingsampleinstancetableshows start-or-termination date:

EMPLOYEE

emp-id emp-name emp-address start-or-termination-date
E1l Tom Berkeley January 10, 2004

E2 Don Berkeley May 22, 2002

E3 Bob Princeton March 15, 2003

E4 John New York September 30, 2003

ES5 Carol Berkeley April 22,2000

E6 George Pittsburgh October 15, 2002

Chapter 7: Normalization Problems and Solutions 71

Common Design Problems

The problem inthe current designis thatthere is noway to record both a startdate, the
date that the EMPLOYEE started work, and a termination date, the date on which an
EMPLOYEE left the company, insituations where both dates are known. This is because
asingleattribute represents two different facts. Thisis alsoa common structurein
legacy COBOL systems, but one that often resulted in maintenance nightmares and
misinterpretation of information.

The solutionis toallowseparateattributes to carry separatefacts. The followingfigure
is anattempt to correct the problem. Itis still notquiteright. To know the startdate for
anemployee, for example, you have to derive what kind of date itis from the
“date-type” attribute. Whilethis may be efficientinterms of physical databasespace
conservation,itcreates confusion with query logic.

EMPLOYEE
employee-id

EMployee-name
employee-address
start-or-termination-date
date-type

Infact, this solution actually creates a different type of normalization error, since
“date-type” does not depend on “employee-id” for its existence. This is also poor design
sinceitsolves a technical problem, but does not solvethe underlying business
problem-how to store two facts about an employee.

When you analyzethe data, you can quickly determine thatitis a better solutiontolet
each attribute carry a separatefact, as in the followingfigure:

EMPLOYEE
employee-id

EMployee-name
employes-address
start-date
termination-date

The followingtableis a sampleinstancetableshowing “start-date” and
“termination-date”:

EMPLOYEE

emp-id emp-name emp-address start-date termination-date
El Tom Berkeley January 10, 2004 -

E2 Don Berkeley May 22,2002 -

72 Data Modeling Overview Guide

Common Design Problems

E3 Bob Princeton March 15, 2003 -
E4 John New York September 30,2003 -
ES5 Carol Berkeley April 22,2000 -
E6 George Pittsburgh October 15, 2002 Nov 30, 2003

Each of the two previous situations contained a firstnormal formerror. By changing the
structures, an attribute now appears only once inthe entity and carries onlya single
fact. If you make sure that all the entity and attribute names are singularandthatno
attribute can carry multiplefacts, you have taken a largestep toward assuringthata
model is infirstnormal form.

Multiple Occurrences of the Same Fact

One of the goals of a relational databaseis to maximize data integrity. To do so, itis
important to represent each factin the databaseonce and onlyonce, otherwise errors
canbegin to enter into the data.The only exception to this rule (one factinone place)is
inthe caseof key attributes, which can appear multipletimes ina database.The
integrity of keys, however, is managed usingreferential integrity.

Multiple occurrences of the same factoften pointto a flawinthe original database
design. Inthe followingfigure, you cansee thatincluding “employee-address” in the
CHILD entity has introduced an error inthe databasedesign.|fan employee has multiple
children, the address mustbe maintained separately for each child.

CHLD
EMPLOYEE child-id
employee-id has employee-id (FK) ‘
employee-name child-name ‘

employes-address

“employee-address” is information aboutthe EMPLOYEE, not information aboutthe
CHILD. Infact, this model violates second normal form, which states that each fact must
depend on the entire key of the entity in order to belong to the entity. The example
aboveis notinsecond normal form because “employee-address” does not depend on
the entire key of CHILD, only on the “employee-id” portion, creating a partial key
dependency. Ifyou place “employee-address” back with EMPLOYEE, you canensure
that the model isinatleastsecond normal form.

Chapter 7: Normalization Problems and Solutions 73

Common Design Problems

Conflicting Facts

Conflictingfacts can occur for a variety of reasons, includingviolation of first, second, or
third normal forms. An example of conflictingfacts occurring through a violation of
second normal form is shown in the followingfigure:

CHILD
child-id ‘

EMPLOYEE
employee-id

employee-id (FK)

has

employee-name
employes-address

child-name
EMp-spouse-address

The following two tables are sampleinstancetables showing “emp-spouse-address”:

EMPLOYEE

emp-id emp-name emp-address
El Tom Berkeley

E2 Don Berkeley

E3 Bob Princeton

E4 Carol Berkeley
CHILD

emp-id child-id child-name emp-spouse-address
El Cc1 Jane Berkeley

E2 Cc1 Tom Berkeley

E2 Cc2 Dick Berkeley

E2 C3 Donna Cleveland

E4 C1 Lisa New York

74 Data Modeling Overview Guide

Common Design Problems

The attribute named “emp-spouse-address” is included in CHILD, but this designis a
second normal form error. The instance data highlights theerror. As you cansee, Don is
the parent of Tom, Dick,and Donna but the instancedata shows two different
addresses recorded for Don's spouse. Perhaps Don has had two spouses (onein
Berkeley, and one in Cleveland), or Donna has a different mother from Tom and Dick. Or
perhaps Don has one spouse with addresses in both Berkeley and Cleveland. Whichis
the correct answer? There is noway to know from the model as it stands. Business users
are the onlysourcethat caneliminatethis type of semantic problem, soanalysts need
to asktheright questions aboutthe business to uncover the correctdesign.

The problem inthe example is that “emp-spouse-address”is a factabout the
EMPLOYEE's SPOUSE, not about the CHILD. Ifyou leave the structure the way itis now,
then every time Don's spouse changes address (presumably along with Don), you will
have to update that factin multipleplaces;onceineach CHILD instancewhere Don is
the parent. If you have to update multiple places, you might miss some and get errors.

Onceitis recognized that “emp-spouse-address”is a fact not about a child, butabout a
spouse, you can correctthe problem. To capture this information,you canadda
SPOUSE entity to the model, as shown in the followingfigure:

EMPLOYEE
employee-id

employee-name
employes-address

has | | has
®
SPOUSE CHLD

spouse-id
employee-id (FK)

child-id
employes-id (FK)

current-or-not

spouse-address ‘ | child-name ‘

The followingthree tables aresampleinstancetables reflectingthe SPOUSE Entity:

EMPLOYEE

emp-id emp-name emp-address
El Tom Berkeley

E2 Don Berkeley

E3 Bob Princeton

E4 Carol Berkeley

Chapter 7: Normalization Problems and Solutions 75

Common Design Problems

CHILD

emp-id child-id child-name
El (ox} Jane

E2 Cc1 Tom

E2 Cc2 Dick

E2 Cc3 Donna

E4 Cc1 Lisa
SPOUSE

emp-id spouse-id spouse-address current-spouse
E2 S1 Berkeley Y
E2 S2 Cleveland N
E3 S1 Princeton Y
E4 s New York Y
E5 S1 Berkeley Y

In breaking out SPOUSE into a separateentity, you cansee that the data for the address
of Don's spouses is correct. Don has two spouses, one current and one former.

By making surethat every attributeinanentity carries a factabout that entity, you can
generally be sure thata model isinatleastsecond normal form. Further transforminga
model into third normal form generally reduces the likelihood thatthe databasewill
become corrupt; inother words, that itwill contain conflictinginformation or that
required information will be missing.

Derived Attributes

Another example of conflictingfacts occurs when third normal formis violated. For
example, ifyou included both a “birth-date” and an “age” attribute as non-key
attributes inthe CHILD entity, you violatethird normal form. This is because “age” is
functionally dependent on “birth-date.” By knowing “birth-date” and the date today,
you can derive the “age” of the CHILD.

Derived attributes arethose that may be computed from other attributes, such as
totals, and therefore you do not need to directly storethem. To be accurate, derived
attributes need to be updated every time their derivation sources are updated. This
creates alargeoverhead inanapplicationthatdoes batch loads or updates, for
example, and puts the responsibility on application designers and coders to ensure that
the updates to derived facts are performed.

76 Data Modeling Overview Guide

Common Design Problems

A goal of normalizationisto ensure that there is only one way to know each fact
recorded inthe database.|fyou know the valueof a derived attribute, and you know
the algorithmby whichitis derived and the values of the attributes used by the
algorithm, then there aretwo ways to know the fact(look atthe value of the derived
attribute, or derive it by manual calculation). If you can get ananswer two different
ways, itis possiblethatthe two answers will be different.

For example, you can choose to record both the “birth-date” and the “age”for CHILD.
And supposethat the “age” attribute is only changedin the databaseduringanend of
month maintenance job. Then, when you askthe question, “How oldis this CHILD?” you
candirectlyaccess “age” and get ananswer, or you can subtract “birth-date” from
“today's-date.” If you did the subtraction, you would always get the right answer. If
“age” was not recently updated, it might give you the wrong answer, and there would
always be the potential for conflicting answers.

There are situations, where itmakes sense to record derived data inthe model,
particularlyifthe data is expensiveto compute. It canalsobevery useful indiscussing
the model with those inthe business. Although the theory of modelingsays that you
should never includederived data or do soonly sparingly, break the rules when you
must and at leastrecord the fact that the attribute is derived and state the derivation
algorithm.

Missing Information

Missinginformationina model can sometimes resultfrom efforts to normalizethe data.
Inthe example, addingthe SPOUSE entity to the EMPLOYEE-CHILD model improves the
design, but destroys the implicitrelationship between the CHILD entity and the SPOUSE
address. Itis possiblethatthe reasonthat “emp-spouse-address” was stored in the
CHILD entity inthe firstplacewas torepresent the address of the other parent of the
child (which was assumed to be the spouse). If you need to know the other parent of
each of the children, then you must add this information to the CHILD entity.

EMPLOYEE
employee-id

EMployEE-name
employee-address

has [] has
®
SPOUSE CHLD
spouse-id child-id
employee-id (FK) has employee-id (FK)
spouse-address - other-parent-id spouse-id (FK)
current-or-not child-name

Chapter 7: Normalization Problems and Solutions 77

Common Design Problems

The followingthree tables aresampleinstance tables for EMPLOYEE, CHILD, and

SPOUSE:

EMPLOYEE

emp-id emp-name emp-address
El Tom Berkeley

E2 Don Berkeley

E3 Bob Princeton

E4 Carol Berkeley
CHILD

emp-id child-id child-name other-parent-id
El C1 Jane -

E2 C1 Tom S1

E2 c2 Dick S1

E2 C3 Donna S2

E4 C1 Lisa S1
SPOUSE

emp-id spouse-id spouse-address current-or-not
E2 S1 Berkeley Y

E2 S2 Cleveland N

E3 S1 Princeton Y

E4 S1 New York Y

ES5 S1 Berkeley Y

However, the normalization of this model is not complete. In order to complete it, you
must ensure that you canrepresent all possiblerelationships between employees and
children, including those where both parents are employees.

78 Data Modeling Overview Guide

Unification

Unification

Inthe following example, the “employee-id” attribute migrates to the CHILD entity
through two relationships: one with EMPLOYEE and the other with SPOUSE. You might
expect that the foreign key attribute would appear twice inthe CHILD entity as a result.
Sincethe attribute “employee-id” was already present inthe key area of CHILD, itis not
repeated in the entity even though itis partof the key of SPOUSE.

EMPLOYEE
employee-id

EMployEE-name
employee-address

has [] has
SPOUSE CHLD
spouse-id child-id
employee-id (FK) has employee-id (FK)
spouse-address - other-parent-id spouse-id (FK)
current-or-not child-name

This combining of two identical foreign key attributes migrated from the same base
attribute through two or more relationshipsis called unification.In the example,
“employee-id”"was part of the primary key of CHILD (contributed by the “has”
relationship from EMPLOYEE) and was also a non-key attribute of CHILD (contributed by
the “has” relationship from SPOUSE). Since both foreign key attributes are the
identifiers of the same EMPLOYEE, itis better that the attribute appears only once.
Unificationis implemented automatically when this situation occurs.

Chapter 7: Normalization Problems and Solutions 79

How Much Normalization Is Enough

The rules used to implement unification include:

m |fthe sameforeign key is contributed to an entity more than once, without the
assignment of rolenames, then all occurrences unify.

m Ifthe occurrences of the foreign key are given different rolenames, then unification
does not occur.

m [fdifferent foreign keys are assigned the samerolename, and these foreign keys are
rolenamed backto the same baseattribute, then unification occurs.Ifthey arenot
rolenamed backto the same baseattribute, there is anerrorinthe diagram.

m Ifany of the foreign keys that unify are part of the primary key of the entity, then
the unified attribute remains as partof the primary key.

m Ifnone of the foreign keys that unify are part of the primary key, then the unified
attribute is not part of the primary key.

Accordingly, you can overridethe unification of foreign keys, when necessary, by
assigningrolenames. If you want the same foreign key to appear two or more times ina
child entity, you canadd a rolename to each foreign key attribute.

How Much Normalization Is Enough

From a formal normalization perspective (whatan algorithmwould find solely from the
shapeof the model, without understanding the meanings of the entities and attributes)
there is nothing wrong with the EMPLOYEE-CHILD-SPOUSE model. However, just
becauseitis normalized does not mean that the model is complete or correct. Itstill
may not be ableto store all of the information thatis needed orit may store the
information inefficiently. With experience, you canlearnto detect and remove
additional design flaws even after the pure normalizationisfinished.

Usingthe following EMPLOYEE-CHILD-SPOUSE model example, you see that there is no
way of recordinga CHILD whose parents are both EMPLOYEEs. Therefore, you can make
additional changes to try to accommodate this type of data.

EMPLOYEE
employee-id

EMployEE-name
employee-address

has [] has
®
SPOUSE CHLD
spouse-id child-id
employee-id (FK) has employee-id (FK)
spouse-address - other-parent-id spouse-id (FK)
current-or-not child-name

80 Data Modeling Overview Guide

How Much Normalization Is Enough

If you noticed that EMPLOYEE, SPOUSE, and CHILD all represent instances of people, you
may want to try to combine the informationintoa singletablethat represents facts
about people and one that represents facts about relationships. To fix the model, you
caneliminate CHILD and SPOUSE, replacingthem with PERSON and
PERSON-ASSOCIATION. This lets you record parentage and marriagethrough the
relationships between two PERSONs captured inthe PERSON-ASSOCIATION entity.

EMPLOYEE
employee-id
person-id (FIK)
start-date
termination-date

|Z
=3
|
PERSON| PEHSQN-ASSDQIATION
il : as-t-p-id person-id (FK)
PErS0n-| associated to as-wip-id persan-id (FK)
PErSOn-narme associated with | #550ciation-type
person-address J

Inthis structure, you canfinally record any number of relationships between two
PERSONSs, as well as a number of relationships you could notpreviouslyrecordinthe
firstmodel, such as adoption. The new structure automatically covers it. To represent
adoptionyou canadd a new valueto the “person-association-type” validation ruleto
represent adopted parentage. You canalsoaddlegal guardian, significant other, or
other relationships between two PERSONSs later, if needed.

EMPLOYEE remains anindependent entity, sincethe business chooses to identify
EMPLOYEEs differently from PERSONs. However, EMPLOYEE inherits the properties of
PERSON by virtue of the is a relationship back to PERSON. Notice the Zon that
relationship and theabsence of a diamond. This is a one-to-zero or one relationship that
cansometimes be used in placeof a subtype when the subtype entities require different
keys. In this example, a PERSON either is an EMPLOYEE or is not an EMPLOYEE.

Chapter 7: Normalization Problems and Solutions 81

SupportforNormalization

If you wanted to use the same key for both PERSON and EMPLOYEE, you canencase the
EMPLOYEE entity into PERSON and allowed its attributes to be NULL whenever the
PERSON is not an EMPLOYEE. You still canspecify thatthe business wanted to look up
employees by a separate identifier, but the business statements woul d be a bit
different. This structure is shownin the followingfigure:

PERSON
person-id

PERSON-ASSOCIATION
as-t-p-id person-id (FI)
as-w-p-id.person-id (FK)
association-type

pErS0n-Name associated to
person-address
ermp-id {I[E1)
start-date
termination-date

associated with

This means that a model may normalize, but still maynotbe a correct representation of
the business. Formal normalizationisimportant. Verifying that the model means
something, perhaps with sets of sampleinstancetables as done here, is no less
important.

Support for Normalization

Support for normalization of data models is supported, but does not currently containa
full normalization algorithm. If you have not used a real time modeling tool before, you
will find the standard modeling features quite helpful. They will prevent you from
making many normalization errors.

First Normal Form Support

Ina model, each entity or attribute is identified by its name. Any name for an objectis
accepted, with the following exceptions:

m Aseconduse of an entity name (depending on your preference for unique names) s
flagged.

m Aseconduseof an attribute name is flagged, unless thatname is a rolename. When
rolenames are assigned, the same name for an attribute may be used in different
entities.

m You cannotbringa foreign key into an entity more than once without unifyingthe
likecolumns.

82 Data Modeling Overview Guide

SupportforNormalization

By preventing multiple uses of the same name, you areprompted to put eachfactin
exactly one place. However, there may still besecond normal form errors ifyou placean
attribute incorrectly, but no algorithmwould find that without more informationthan is
present ina model.

Ina data model, CA ERwin DM cannotknow thata name you assigntoan attribute can
represent a listof things. Inthe following example, CA ERwin DM accepts
“children's-names” as an attribute name. So CA ERwin DM does not directly guarantee
that every model isinfirstnormal form.

PERSON

person-id PERSON-ASSOCIATION
as-t-p-id person-id (FI)
as-w-p-id.person-id (FK)
association-type

pErS0n-Name associated to

person-address _ _
ernp-id (IET) associated with
start-date

termination-date

However, the DBMS schema function does not supporta data type of /ist. Since the
schema is a representation of the databaseina physical relational system, firstnormal
form errors are also prevented at this level.

Second and Third Normal Form Support

CA ERwin DM does not currently manage functional dependencies, but it can help to
prevent second and third normal form errors. For example, if you reconstructthe
examples below, you will find thatonce “spouse-address”is defined as an attribute of
SPOUSE, you cannot alsodefineit as an attribute of CHILD. (Again, depending on your
preference for unique names.)

EMPLOYEE
employee-id

employee-name
employee-address

has [] has
SPOUSE CHLD
spouse-id child-id
employese-id (FK) has employee-id (FK)
spouse-address o other-parent-id spouse-id (FK)
current-or-not child-name

Chapter 7: Normalization Problems and Solutions 83

SupportforNormalization

By preventing the multiple occurrence of foreign keys without rolenames, you are
reminded to think about what the structure represents. Ifthe same foreign key occurs
twice inthe same entity, there is a business question toask: Are we recordingthe keys
of two separate instances, or do both of the keys represent the same instance?

When the foreign keys represent different instances, separaterolenames areneeded. If
the two foreign keys represent the same instance, then itis very likely thatthere is a
normalization error somewhere. A foreign key appearingtwice inan entity without a
rolename means that there is a redundant relationship structurein the model. When
two foreign keys are assigned the same rolename, unification occurs.

84 Data Modeling Overview Guide

Chapter 8: Physical Models

Objective

This section contains the following topics:

Objective (see page 85)
Support for the Roles of the Physical Model (see page 86)
Denormalization (see page 87)

The objective of a physical model is to provide a databaseadministrator with sufficient
information to create an efficient physical database. The physical model also provides a
context for the definition and recording (in the data dictionary) of the data elements
that form the database,and assists theapplicationteamin choosinga physical structure
for the programs that will access thedata.To ensure that all information system needs
are met, physical models areoften developed jointly by a team representing the data
administration, databaseadministration,and application development areas.

When itis appropriate for the development effort, the model canalso providethe basis
for comparingthe physical databasedesignagainstthe original business information
requirements to:

m Demonstrate that the physical databasedesign adequately supports those
requirements.

m Document physicaldesign choices and theirimplications,suchaswhatis satisfied,
and what is not.

m |dentify databaseextensibility capabilities and constraints.

Chapter 8: Physical Models 85

Supportforthe Roles of the Physical Model

Support for the Roles of the Physical Model

Supportis provided for both roles of a physical model:
m Generating the physical database

m Documenting physicaldesign againstthe business requirements

For example, ina logical/physical model, you can create a physical model from an ERD,
key-based, or fully attributed model simply by changingthe view of the model from
Logical Model to Physical Model. Each option in the logical model has a corresponding
option inthe physical model. Therefore, each entity becomes a relational table,
attributes become columns, and keys become indices.

Once the physical model is created, you can generate all model objects in the correct

syntax for the selected target server directly to the catalogof the target server, or
indirectlyas a schema DDL scriptfile.

Summary of Logical and Physical Model Components

The following tablesummarizes the relationship between objects inalogical anda
physical model:

Logical Model Physical Model

Entity Table

Dependent entity Foreign Key is partof the childtable's
Primary Key

Independent entity Parent table or, ifitis a child table,
Foreign Key is NOT partof the childtable's
Primary Key

Attribute Column

Logical datatype (text, number, datetime, Physicaldatatype(validexamplevaries

blob) depending on the target server selected)

Domain (logical) Domain (physical)

Primary key Primary key, Primary Key Index

Foreign key Foreign key, Foreign Key Index

Alternate key (AK) Alternate Key Index-a unique, non-primary
index

86 Data Modeling Overview Guide

Denormalization

Logical Model

Physical Model

Inversion entry (IE)

Inversion entry Index-a non-unique index
created to searchtableinformation by a
non-unique value,such as customer last
name.

Key group

Index

Business rule

Trigger or stored procedure

Validationrule

Constraint

Relationship

Relationship implemented using Foreign
Keys

Identifyingrelationship

Foreign Key is partof the childtable's
Primary Key (above the line)

Non-identifyingrelationship

Foreign Key is NOT partof the childtable's
Primary Key (below the line)

Subtype relationship

Denormalized tables

Many-to-many relationship

Associativetable

Referential Integrity relationship (Cascade,
Restrict, Set Null, Set Default)

INSERT, UPDATE, and DELETE Triggers

Cardinality relationship

INSERT, UPDATE, and DELETE Triggers

N/A

View or view relationship

N/A

Prescriptor postscript

Referential integrity is a partof the logical model, sincethe decision abouthow to
maintainarelationshipisabusinessdecision. Referential integrityis alsoa physical
model component, sincetriggers or declarativestatements appearinthe schema.
Referential integrity is supported as a part of both the logical and physical models.

Denormalization

You canalso denormalize the structure of the logical model, or allow data redundancyin
atable to improve query performance so that you can build a related physical model
thatis designed effectively for the target RDBMS. Features supporting denormalization

include:

m [ogical only properties for entities, attributes, key groups, and domains. You can
mark anyitem inthe logical model logical onlysothatitappearsinthe logical
model, but does not appearinthe physical model.For example, you can use the
logical only settings to denormalize subtype relationships or support partial key

migrationinthe physical model.

Chapter 8: Physical Models 87

Denormalization

®m Physical only properties fortables, columns, indexes,and domains. You can mark
anyitem inthe physical model physicalonlysothatitappearsinthe physical model
only. This setting also supports denormalization of the physical model sinceit
enables the modeler to includetables,columns,andindexes inthe physical model
that directly support physical implementation requirements.

m Resolution of many-to-many relationships ina physical model.Support for resolving
many-to-many relationships is provided in both the logical and physical models. If
you resolvethe many-to-many relationshipinthelogical model, the associative
entity is created and lets you add additional attributes. If you chooseto keep the
many-to-many relationshipinthe logical model,you canstill resolvethe
relationshipinthephysical model.The linkis maintained between the original
logical design and the new physicaldesign,sothe origin of the associativetableis
documented inthe model.

88 Data Modeling Overview Guide

Appendix A: Dependent Entity Types

Classification of Dependent Entities

The followingtablelists thetypes of dependent entities that may appearinan IDEF1X

diagram:
Dependent Entity Type Description Example
Characteristic A characteristic entity represents a group of may have
attributes that occur multipletimes for an PERSOM HOBBY

entity, andis not directlyidentified by any
other entity. Inthe example, HOBBY is a
characteristic of PERSON.

Associativeor Designative Associativeand designativeentities record
multiplerelationships between two or more
entities. Ifthe entity carries only the may Use used by |
relationshipinformation,itis termed a ‘ ‘
designativeentity. Ifit alsocarries attributes
that further describethe relationship, itis [ADDRESS'USAGE]
calledanassociativeentity.In the example,

ADDRESS-USAGE is anassociativeor
designativeentity.

PERSON ADDRESS

Subtype Subtype entities are the dependent entities ACCOUNT
inasubtype relationship.Inthe example,
CHECKING-ACCOUNT, SAVINGS-ACCOUNT,
and LOAN-ACCOUNT aresubtype entities.

account-type

CHECKING-ACCOUNT][SA\:’INGS—ACCOUNT]E

Appendix A: Dependent Entity Types 89

Glossary

alternate key

attribute

basename

binary relationship

BLOB

cardinality

complete subtype cluster

dependent entity

An attribute or attributes that uniquelyidentify aninstance of an entity.

If more than one attribute or group of attributes uniquelyidentify aninstanceof an
entity, the alternate keys are those attributes or groups of attributes not selected as the
primary key. A unique index for each alternate key is generated.

Represents a type of characteristicor property associated with a set of real or abstract
things (people, places, events, and soon).

The original name of a rolenamed foreign key.

A relationship where exactly one instanceofthe parentis related to zero, one, or more
instances of a child. In IDEF1X, identifying, non-identifying, and subtype relationships
areall binaryrelationships.

A dbspacethatis reserved for storage of the byte and text data that makes up binary
largeobjects, or BLOBs, stored intable columns. The BLOB dbspacecanholdimages,
audio, video, longtext blocks, or anydigitized information.

The ratio of instances of a parent to instances of a child. In IDEF1X, the cardinality of
binaryrelationshipsis 1:n,where n canbe one of the following:

m Zero, one, or more (signified by a blankspace)
m Oneor more (signified by the letter P)
m Zero orone (signified by the letter Z)

m Exactlyn (where nis some number)

Ifthe subtype clusterincludes all of the possible subtypes (every instance of the generic
parentis associated with one subtype), then the subtype clusteris complete. For
example, every ACCOUNT is either a checking, savings, or loanaccountand therefore
the subtype cluster of CHECKING-ACCOUNT, SAVINGS-ACCOUNT, or LOAN-ACCOUNT is
a complete subtype cluster.

An entity whose instances cannotbe uniquely identified without determining its
relationship to another entity or entities.

Glossary 91

Classification of Dependent Entities

denormalization

discriminator

domain

entity

foreign key

identifying relationship

To allowdata redundancyinatableto improve query performance.

The valueof an attribute inan instance of the generic parent determines to which of the
possiblesubtypes thatinstancebelongs. This attribute is known as the discriminator. For
example, the valueinthe attribute “account-type” inaninstance of ACCOUNT
determines to which particular subtype (CHECKING-ACCOUNT, SAVINGS-ACCOUNT, or
LOAN-ACCOUNT) that instancebelongs.

A group of predefined logical and physical property characteristics thatcan be saved,
selected, and then attached to attributes and columns.

An entity represents a set of real or abstractthings (people, places, events, and so on)
that have common attributes or characteristics. Entities can beeither independent or
dependent.

An attribute that has migrated through arelationship froma parent entity to a child
entity. A foreign key represents a secondary reference to a singleset of values;the
primary reference is the owned attribute.

A relationship where aninstance of the child entityis identified through its association
with a parent entity. The primary key attributes of the parent entity become primary
key attributes of the child.

incomplete subtype cluster

independent entity

inversion entry

logical model

If the subtype cluster does notincludeall of the possiblesubtypes (every instance of the
generic parentis not associated with one subtype), then the subtype clusteris
incomplete. For example, if some employees arecommissioned, a subtype cluster of
SALARIED-EMPLOYEE and PART-TIME EMPLOYEE is incomplete.

An entity whose instances can beuniquelyidentified without determining its
relationship to another entity.

An attribute or attributes that do not uniquelyidentifyan instance ofan entity, butare
often used to access instances of entities. A non-unique index for each inversion entryis
generated.

The data modeling level where you create a conceptual model that contains objects
such as entities, attributes, and key groups.

92 Data Modeling Overview Guide

Classification of Dependent Entities

logical/physical model

non-key attribute

A model type created where the logical and physical models areautomatically linked.

Any attribute thatis not part of the entity’s primary key. Non-key attributes can be part
of an inversion entry or alternate key, and canalso beforeign keys.

non-identifying relationship

non-specific relationship

normalization

physical model

primary key

referential integrity

rolename

A relationship where aninstance of the child entityis not identified through its
association with a parent entity. The primary key attributes of the parent entity become
non-key attributes of the child.

Both parent-child connection and subtype relationshipsareconsidered specific
relationshipssincethey define precisely how instances of one entity relate to instances
of another. However, inthe initial development of a model, itis often helpful to identify
non-specific relationships between two entities. A non-specific relationship, also
referred to as a many-to-many relationship,is an association between two entities
where each instanceof the firstentity is associated with zero, one, or many instances of
the second entity and each instance of the second entity is associated with zero, one, or
many instances of the firstentity.

The process by which dataina relational constructis organized to minimize redundancy
and non-relational constructs.

The data modeling level where you add databaseand database management system
(DBMS) specific modelinginformationsuch as tables, columns, and datatypes.

An attribute or attributes that uniquelyidentify aninstance of anentity. If more than
one attribute or group of attributes can uniquelyidentify each instance, the primary key
is chosen from this listof candidates based oniits perceived valueto the business as an
identifier.Ideally, primary keys should notchange over time and should be as small as
possible. Aunique index for each primary key is generated.

The assertion thatthe foreign key valuesinaninstanceofa child entity have
correspondingvalues ina parententity.

A new name for a foreign key. Arolename is used to indicatethat the set of values of
the foreign key is a subsetof the set of values of the attribute in the parent, and
performs a specific function (or role)in the entity.

Glossary 93

Classification of Dependent Entities

schema

specific relationship

subtype entity

subtype relationship

The structure of a database. Usually refers to the DDL (data definitionlanguage) script
file. DDL consists of CREATE TABLE, CREATE INDEX, and other statements.

A specificrelationshipisanassociation between entities where each instance of the
parent entity is associated with zero, one, or many instances of the child entity, and
each instanceof the child entity is associated with zero or one instance of the parent
entity.

There are often entities which are specific types of other entities. For example, a
SALARIED EMPLOYEE is a specific type of EMPLOYEE. Subtype entities areuseful for
storinginformation that only applies toa specific subtype. They are also useful for
expressingrelationshipsthatareonly valid for thatspecific subtype, such as the fact
that a SALARIED EMPLOYEE qualifies for a certain BENEFIT, whilea
PART-TIME-EMPLOYEE does not. InIDEF1X, subtypes withina subtype cluster are
mutually exclusive.

A subtype relationship (also known as a categorization relationship) is a relationship
between a subtype entity and its generic parent. A subtype relationship always relates
one instanceofa generic parent with zero or one instance of the subtype.

94 Data Modeling Overview Guide

Index

A

alias,entitynames ¢ 38

alternate key ¢ 30

associativeentity ¢ 55
definition of 89

attribute
avoiding multipleoccurrences ¢73
avoidingmultipleusages ¢ 71
avoidingsynonyms and homonyms ¢ 38
definition e 41
definition of ¢ 21
definition usingbusinessterms 41
derived ¢ 76
inanERD e 20
name e 37
rolename ¢ 35
specifyinga domain of values » 41
specifyinga rolename ¢ 43
validationrulein definition ¢41

B

baseattribute, definition of ® 43
binaryrelationship, definition of ¢ 57
business
glossary
creatinge 41
rule
capturingina definition e 44
term
organizinge 41

C

CA ERwin DM
diagramcomponents ¢ 20
model advantages ¢ 9

candidatekey, definition of » 28

cardinality
definition ¢ 45
inidentifyingrelationships ¢ 45
in non-identifyingrelationships e 47
notationin IDEF1Xand |E ¢ 45

cascade
definition of ¢ 49
example ¢ 53

characteristic entity, definition of ¢ 89
child entity « 22

complete subtype relationships 63
components, inan ERD ¢ 20

D

dataanalyst, roleof ¢ 13
data modeler, role of 13
data modeling
assertionexamples ¢ 25
benefits ¢ 9
definitionof ¢ 11
methodologies » 11
roleof data analyste 13
roleof data modeler « 13
role of facilitator ¢ 13
roleof subject matter expert e 13
role of the manager » 13
sample|DEF1X methodology ¢ 14
sessions ¢12
use of verb phrases ¢ 24
definition
attribute ¢ 41
capturingbusiness rules 44
entity ¢ 39
rolename ¢ 43
denormalization
inthe physical model » 87
dependency
existence ¢ 32
identification ¢32
dependent entity ¢ 32
types of ¢ 89
derived attribute
definition of ¢ 76
when to use ¢ 76
designativeentity, definition of 89
discriminator, in subtyperelationships ¢61
domain, specifyingvalid attributevalues ¢ 41

E

entity
assigninga definition ¢ 39
associative e 55, 89
avoidingcircular definitions * 40

Index 95

avoiding synonyms and homonyms ¢ 38 inheritancehierarchy, definitionof ¢ 61

characteristic » 89 instance, definitionof 21
child 22 inversionentry 31
definition conventions e 39
definition description 39 K
definition of ¢ 21 key
definition usingbusinessterms 41 alternate key * 30
dependent ¢ 32 inversionentry ¢ 31
designative » 89 primary e 28
inanERD e 20 selection example » 28
independent ¢ 32 surrogatee 28
name ¢ 37 key attributes ¢ 28
parent e 22 key-based model
subtype ¢ 61, 89 definition of ¢ 16, 27
supertype ¢ 61 objective ¢ 27

entity relationship diagram
creatinge 20 L

definition of ¢ 16
objective ® 19
overview ¢ 19

logical model, definitionof ¢ 16
logical only property 87

samplee 20 M
subjectareas ¢ 19
ERD ¢ 16 manager, role of ¢ 13

many-to-many e 23,55
eliminating ¢55
migrating, rolename ¢ 35

exclusivesubtyperelationships ¢ 64
existence dependency ¢ 32

F
N
facilitator,roleofe 13
firstnormal form « 69, 71 naming
foreign key attributes ¢ 37
assigningreferential integrity ¢ 49 entities ¢ 37
unification ¢43 n-aryrelationship ¢55
foreign key attribute, rolename * 35 definition of « 57
fully-attributed model ¢ 14 non-identifyingrelationship ¢ 34
definition of » 16 cardinality e 47
non-key attribute » 28
G normal forms

summary of sixforms « 68

normalization
avoidingdesign problems ¢ 69, 71, 73,74, 76
CA ERwin DM supporte 82

generalization
definition of category ¢ 61
definition of hierarchy ¢61

I completing * 80
denormalizinginthe physical model ¢ 87
identification dependency ¢ 32 firstnormal form 69, 71
identifyingrelationship ¢33 second normal form e« 73
cardinality ¢ 45 third normal form e 74, 76

inclusive subtyperelationships 64
incomplete subtype relationships ¢ 63
independent entity ¢ 32

96 Data Modeling Overview Guide

o
one-to-many e 22
P

parent entity e 22
physical model
creating e 85
definition e 17
physicalonly property » 87
primary key 28
choosinge 28

R

recursiverelationship ¢55
definition of ¢ 59

referential integrity » 49
cascadee 49
definition of ¢ 49
example ¢ 53,54
notationin a CA ERwin DM diagrame 51
restricte 49
set default e 49
setnull « 49

relationship
and dependent entities ¢ 32
andindependent entities * 32
complete subtype ¢ 63
definition of 22
enforcingcardinality e 45
exclusivesubtype e 64
identifying » 33
inanERD ¢ 20
inclusivesubtype e 64
incomplete subtype ¢ 63
mandatory and optional ¢ 47
many-to-many ¢ 23,55
n-ary e 55,57
non-identifying e 34
one-to-many e 22
readingfrom childto parent ¢ 24
readingfrom parent to child e 24
recursivee 55, 59
referential integrity » 49
subtype ¢ 55
subtype (category) ¢ 61
subtype notation ¢ 65
verb phrasee 22

repeating data groups ¢ 69
restrict
definition of ¢ 49
example ¢ 53
rolename
assigninga definition ¢43
definition ¢ 35
migrating e 35

S

second normal form ¢ 73
session
planninge12
roles e 13
set default, definition of 49
set null
definition of « 49
example ¢ 54
subject matter expert, roleof ¢ 13
subtype entity, definition of « 89
subtype relationship 55
complete » 63
creating e 66
definition e 61
discriminatore61
exclusive e 64
inclusive e 64
incomplete » 63
notation e 65
supertypes ¢ 61
supertypes ¢ 61
surrogatekey, assigning 28

T

third normal form ¢ 74, 76
fully-attributed model ¢ 16
key-based model ¢ 16

transformation model » 14
creating e 85
definitionof « 17

U

unification
avoiding normalization problems 79
foreign key rolenaming e 43

vV

validationrule,in attribute definitions e 41

Index 97

verb phrasee 22
example ¢ 22
inadata model ¢ 24

98 Data Modeling Overview Guide

	CA ERwin Data Modeler Data Modeling Overview Guide
	CA Technologies Product References
	Contact CA Technologies
	Contents
	1: Introduction
	Benefits of Data Modeling
	Methods
	Typographical Conventions

	2: Information Systems, Databases, and Models
	Data Modeling
	Data Modeling Sessions
	Session Roles

	Sample IDEF1X Modeling Methodology
	Modeling Architecture
	Logical Models
	Entity Relationship Diagram
	Key-Based Model
	Fully-Attributed Model

	Physical Models
	Transformation Model
	DBMS Model

	3: Logical Models
	Constructing a Logical Model
	Entity Relationship Diagram
	Entities and Attributes Defined
	Logical Relationships
	Many-to-Many Relationships

	Logical Model Design Validation
	Data Model Example

	4: The Key-Based Data Model
	Key Types
	Entity and Non-Key Areas

	Primary Key Selection
	Alternate Key Attributes
	Inversion Entry Attributes
	Relationships and Foreign Key Attributes
	Dependent and Independent Entities
	Identifying Relationships
	Nonidentifying Relationships
	Rolenames

	5: Naming and Defining Entities and Attributes
	Entity and Attribute Names
	Synonyms, Homonyms, and Aliases

	Entity Definitions
	Descriptions
	Business Examples
	Comments

	Definition References and Circularity
	Business Glossary Construction

	Attribute Definitions
	Validation Rules

	Rolenames
	Definitions and Business Rules

	6: Relationships
	Relationship Cardinality
	Cardinality in Nonidentifying Relationships

	Referential Integrity
	Referential Integrity Options
	RI, Cardinality, and Identifying Relationships
	RI, Cardinality, and Non-Identifying Relationships

	Additional Relationship Types
	Many-to-Many Relationships
	N-ary Relationships
	Recursive Relationships
	Subtype Relationships
	Complete Compared to Incomplete Subtype Structures
	Inclusive and Exclusive Relationships
	IDEF1X and IE Subtype Notation
	When to Create a Subtype Relationship

	7: Normalization Problems and Solutions
	Normalization
	Overview of the Normal Forms
	Common Design Problems
	Repeating Data Groups
	Multiple Use of the Same Attribute
	Multiple Occurrences of the Same Fact
	Conflicting Facts
	Derived Attributes
	Missing Information

	Unification
	How Much Normalization Is Enough
	Support for Normalization
	First Normal Form Support
	Second and Third Normal Form Support

	8: Physical Models
	Objective
	Support for the Roles of the Physical Model
	Summary of Logical and Physical Model Components

	Denormalization

	A: Dependent Entity Types
	Classification of Dependent Entities

	Glossary
	Index

