Categories
erwin Expert Blog

Keeping Up with New Data Protection Regulations

Keeping up with new data protection regulations can be difficult, and the latest – the General Data Protection Regulation (GDPR) – isn’t the only new data protection regulation organizations should be aware of.

California recently passed a law that gives residents the right to control the data companies collect about them. Some suggest the California Consumer Privacy Act (CCPA), which takes effect January 1, 2020, sets a precedent other states will follow by empowering consumers to set limits on how companies can use their personal information.

In fact, organizations should expect increasing pressure on lawmakers to introduce new data protection regulations. A number of high-profile data breaches and scandals have increased public awareness of the issue.

Facebook was in the news again last week for another major problem around the transparency of its user data, and the tech-giant also is reportedly facing 10 GDPR investigations in Ireland – along with Apple, LinkedIn and Twitter.

Some industries, such as healthcare and financial services, have been subject to stringent data regulations for years: GDPR now joins the Health Insurance Portability and Accountability Act (HIPAA), the Payment Card Industry Data Security Standard (PCI DSS) and the Basel Committee on Banking Supervision (BCBS).

Due to these pre-existing regulations, organizations operating within these sectors, as well as insurance, had some of the GDPR compliance bases covered in advance.

Other industries had their own levels of preparedness, based on the nature of their operations. For example, many retailers have robust, data-driven e-commerce operations that are international. Such businesses are bound to comply with varying local standards, especially when dealing with personally identifiable information (PII).

Smaller, more brick-and-mortar-focussed retailers may have had to start from scratch.

But starting position aside, every data-driven organization should strive for a better standard of data management — and not just for compliance sake. After all, organizations are now realizing that data is one of their most valuable assets.

New Data Protection Regulations – Always Be Prepared

When it comes to new data protection regulations in the face of constant data-driven change, it’s a matter of when, not if.

As they say, the best defense is a good offense. Fortunately, whenever the time comes, the first point of call will always be data governance, so organizations can prepare.

Effective compliance with new data protection regulations requires a robust understanding of the “what, where and who” in terms of data and the stakeholders with access to it (i.e., employees).

The Regulatory Rationale for Integrating Data Management & Data Governance

This is also true for existing data regulations. Compliance is an on-going requirement, so efforts to become compliant should not be treated as static events.

Less than four months before GDPR came into effect, only 6 percent of enterprises claimed they were prepared for it. Many of these organizations will recall a number of stressful weeks – or even months – tidying up their databases and their data management processes and policies.

This time and money was spent reactionarily, at the behest of proactive efforts to grow the business.

The implementation and subsequent observation of a strong data governance initiative ensures organizations won’t be put on the spot going forward. Should an audit come up, current projects aren’t suddenly derailed as they reenact pre-GDPR panic.

New Data Regulations

Data Governance: The Foundation for Compliance

The first step to compliance with new – or old – data protection regulations is data governance.

A robust and effective data governance initiative ensures an organization understands where security should be focussed.

By adopting a data governance platform that enables you to automatically tag sensitive data and track its lineage, you can ensure nothing falls through the cracks.

Your chosen data governance solution should enable you to automate the scanning, detection and tagging of sensitive data by:

  • Monitoring and controlling sensitive data – Gain better visibility and control across the enterprise to identify data security threats and reduce associated risks.
  • Enriching business data elements for sensitive data discovery – By leveraging a comprehensive mechanism to define business data elements for PII, PHI and PCI across database systems, cloud and Big Data stores, you can easily identify sensitive data based on a set of algorithms and data patterns.
  • Providing metadata and value-based analysis – Simplify the discovery and classification of sensitive data based on metadata and data value patterns and algorithms. Organizations can define business data elements and rules to identify and locate sensitive data, including PII, PHI and PCI.

With these precautionary steps, organizations are primed to respond if a data breach occurs. Having a well governed data ecosystem with data lineage capabilities means issues can be quickly identified.

Additionally, if any follow-up is necessary –  such as with GDPR’s data breach reporting time requirements – it can be handles swiftly and in accordance with regulations.

It’s also important to understand that the benefits of data governance don’t stop with regulatory compliance.

A better understanding of what data you have, where it’s stored and the history of its use and access isn’t only beneficial in fending off non-compliance repercussions. In fact, such an understanding is arguably better put to use proactively.

Data governance improves data quality standards, it enables better decision-making and ensures businesses can have more confidence in the data informing those decisions.

The same mechanisms that protect data by controlling its access also can be leveraged to make data more easily discoverable to approved parties – improving operational efficiency.

All in all, the cumulative result of data governance’s influence on data-driven businesses both drives revenue (through greater efficiency) and reduces costs (less errors, false starts, etc.).

To learn more about data governance and the regulatory rationale for its implementation, get our free guide here.

DG RediChek

Categories
erwin Expert Blog

Data Governance Tackles the Top Three Reasons for Bad Data

In modern, data-driven busienss, it’s integral that organizations understand the reasons for bad data and how best to address them. Data has revolutionized how organizations operate, from customer relationships to strategic decision-making and everything in between. And with more emphasis on automation and artificial intelligence, the need for data/digital trust also has risen. Even minor errors in an organization’s data can cause massive headaches because the inaccuracies don’t involve just one corrupt data unit.

Inaccurate or “bad” data also affects relationships to other units of data, making the business context difficult or impossible to determine. For example, are data units tagged according to their sensitivity [i.e., personally identifiable information subject to the General Data Protection Regulation (GDPR)], and is data ownership and lineage discernable (i.e., who has access, where did it originate)?

Relying on inaccurate data will hamper decisions, decrease productivity, and yield suboptimal results. Given these risks, organizations must increase their data’s integrity. But how?

Integrated Data Governance

Modern, data-driven organizations are essentially data production lines. And like physical production lines, their associated systems and processes must run smoothly to produce the desired results. Sound data governance provides the framework to address data quality at its source, ensuring any data recorded and stored is done so correctly, securely and in line with organizational requirements. But it needs to integrate all the data disciplines.

By integrating data governance with enterprise architecture, businesses can define application capabilities and interdependencies within the context of their connection to enterprise strategy to prioritize technology investments so they align with business goals and strategies to produce the desired outcomes. A business process and analysis component enables an organization to clearly define, map and analyze workflows and build models to drive process improvement, as well as identify business practices susceptible to the greatest security, compliance or other risks and where controls are most needed to mitigate exposures.

And data modeling remains the best way to design and deploy new relational databases with high-quality data sources and support application development. Being able to cost-effectively and efficiently discover, visualize and analyze “any data” from “anywhere” underpins large-scale data integration, master data management, Big Data and business intelligence/analytics with the ability to synthesize, standardize and store data sources from a single design, as well as reuse artifacts across projects.

Let’s look at some of the main reasons for bad data and how data governance helps confront these issues …

Reasons for Bad Data

Reasons for Bad Data: Data Entry

The concept of “garbage in, garbage out” explains the most common cause of inaccurate data: mistakes made at data entry. While this concept is easy to understand, totally eliminating errors isn’t feasible so organizations need standards and systems to limit the extent of their damage.

With the right data governance approach, organizations can ensure the right people aren’t left out of the cataloging process, so the right context is applied. Plus you can ensure critical fields are not left blank, so data is recorded with as much context as possible.

With the business process integration discussed above, you’ll also have a single metadata repository.

All of this ensures sensitive data doesn’t fall through the cracks.

Reasons for Bad Data: Data Migration

Data migration is another key reason for bad data. Modern organizations often juggle a plethora of data systems that process data from an abundance of disparate sources, creating a melting pot for potential issues as data moves through the pipeline, from tool to tool and system to system.

The solution is to introduce a predetermined standard of accuracy through a centralized metadata repository with data governance at the helm. In essence, metadata describes data about data, ensuring that no matter where data is in relation to the pipeline, it still has the necessary context to be deciphered, analyzed and then used strategically.

The potential fallout of using inaccurate data has become even more severe with the GDPR’s implementation. A simple case of tagging and subsequently storing personally identifiable information incorrectly could lead to a serious breach in compliance and significant fines.

Such fines must be considered along with the costs resulting from any PR fallout.

Reasons for Bad Data: Data Integration

The proliferation of data sources, types, and stores increases the challenge of combining data into meaningful, valuable information. While companies are investing heavily in initiatives to increase the amount of data at their disposal, most information workers are spending more time finding the data they need rather than putting it to work, according to Database Trends and Applications (DBTA). erwin is co-sponsoring a DBTA webinar on this topic on July 17. To register, click here.

The need for faster and smarter data integration capabilities is growing. At the same time, to deliver business value, people need information they can trust to act on, so balancing governance is absolutely critical, especially with new regulations.

Organizations often invest heavily in individual software development tools for managing projects, requirements, designs, development, testing, deployment, releases, etc. Tools lacking inter-operability often result in cumbersome manual processes and heavy time investments to synchronize data or processes between these disparate tools.

Data integration combines data from several various sources into a unified view, making it more actionable and valuable to those accessing it.

Getting the Data Governance “EDGE”

The benefits of integrated data governance discussed above won’t be realized if it is isolated within IT with no input from other stakeholders, the day-to-day data users – from sales and customer service to the C-suite. Every data citizen has DG roles and responsibilities to ensure data units have context, meaning they are labeled, cataloged and secured correctly so they can be analyzed and used properly. In other words, the data can be trusted.

Once an organization understands that IT and the business are both responsible for data, it can develop comprehensive, holistic data governance capable of:

  • Reaching every stakeholder in the process
  • Providing a platform for understanding and governing trusted data assets
  • Delivering the greatest benefit from data wherever it lives, while minimizing risk
  • Helping users understand the impact of changes made to a specific data element across the enterprise.

To reduce the risks of and tackle the reasons for bad data and realize larger organizational objectives, organizations must make data governance everyone’s business.

To learn more about the collaborative approach to data governance and how it helps compliance in addition to adding value and reducing costs, get the free e-book here.

Data governance is everyone's business

Categories
erwin Expert Blog

GDPR, Compliance Concerns Driving Data Governance Strategies

There are many factors driving data governance adoption, as revealed in erwin’s State of Data Governance Report. Over the coming weeks, we’ll be exploring them in detail, starting with regulatory compliance.

By Michael Pastore

Almost every organization views data governance as important, so why don’t they all have it in place?

Modern organizations run on data. Whether from sensors monitoring equipment on a factory floor or a customer’s purchasing history, data enters modern businesses from every angle, gets stored in any number of places, and is used by many different people and applications.

Data governance refers to the practices that help businesses understand where their data comes from, where it resides, how accurate it is, who or what can access it, and how it can be used. The idea of data governance is not new, but putting data governance into practice and reaping the benefits remains a struggle for many organizations.

According to our November 2017 survey with UBM, nearly all (98 percent) respondents said their organizations view data governance as either important or critically important from a business perspective. Despite this, 46 percent of respondents indicated their organizations recognize the value of data, but lack a formal governance strategy.

One of the significant obstacles to data governance for many organizations is the idea of ownership. In many businesses, it’s safe to say that the IT organization has ownership over the network, just as it’s easy to say that the business oversees payroll.

Data is a bit more complicated. The business side of the organization often analyzes the data, but it’s the IT organization that stores and protects it. This data division of labor often leaves data governance in a sort of no-man’s land, with each side expecting the other to pick up the torch.

The results of the erwin-UBM survey indicate that businesses are increasingly treating data governance as an enterprise-wide imperative. At 57 percent of respondents’ organizations, both IT and the business are responsible for data governance. Just 34 percent of the organizations put IT solely in charge.

Strong data governance initiatives will overcome the issue of ownership thanks in part to a new organizational structure that considers the importance of data. The emergence of the chief data officer (CDO) is one sign that businesses recognize the vital role of their data.

Many of the first generation of CDOs reported to the CIO. Now, you’re more likely to see the CDO at forward-thinking organizations sit on the business side, perhaps in the finance department, or even marketing, which is a huge consumer of data in many businesses. Under the CDO, it’s increasingly likely to find a data protection officer (DPO) tasked with overseeing how the business safeguards its information.

What's Driving Data Governance

Driving Data Governance: Compliance Is Leading Organizations to Data Governance

Now is a good time for businesses to re-think their data structure and governance initiatives. Data is central to organizations’ compliance, privacy and security initiatives because it has value — value to the business; value to the customer; and, like anything of value, value to criminals who want to get their hands on it.

The need to protect data and reduce risk is an important factor in driving data governance at many organizations. In fact, our survey found that regulatory compliance, cited by 60 percent of respondents, was the most popular factor driving data governance.

There’s an increased sense of urgency regarding data governance and compliance because of the European Union’s General Data Protection Regulation (GDPR), which goes into effect this month. According to our research, only 6 percent of respondents said their organization was “completely prepared” for the regulation.

Not only does the GDPR protect EU citizens at home, but it extends protections to EU citizens wherever they do business. It really goes much farther than any other legislation ever has.

The GDPR essentially gives rights to the people the data represents, so businesses must:

  • Minimize identifiability in data
  • Report data breaches within 72 hours
  • Give consumers the ability to dispute data and demand data portability
  • Understand the GDPR’s expanded definition of personally identifiable information (PII)
  • Extend to consumers the right to be “forgotten”

And much, much more.

The maximum fine for organizations in breach of the GDPR is up to 4 percent of annual global turnover or €20 million, whichever is greater. And because the GDPR will apply to anyone doing business with EU citizens, and the internet transcends international borders, it’s likely the GDPR will become the standard organizations around the world will need to rise to meet.

The GDPR is a hot topic right now, but it’s not the only data-security regulation organizations have to honor. In addition to Payment Card Industry (PCI) standards for payment processors, industry-specific regulations exist in such areas as financial services, healthcare and education.

This web of regulations brings us back to data governance. Simply put, it’s easier to protect data and mitigate a breach if your organization knows where the data comes from, where it is stored, and what it includes.

Businesses stand to gain a number of advantages by implementing strong data governance. Regulatory compliance is sure to get the attention of C-level executives, the legal team and the board, but it means very little to consumers – until there’s a breach.

With new breaches being reported on a seemingly daily basis, businesses that practice strong data governance can help build a competitive advantage by better protecting their data and gaining a reputation as an organization that can be trusted in a way that firms suffering from high-profile breaches cannot. In this way, data governance helps contribute directly to the bottom line.

Still, compliance is the No. 1 factor driving data governance initiatives for a reason.

Using data governance to drive upside growth is great, but not if you’re going to lose money in fines.

In our next post in this series, we’ll explore how your organization can use data governance to build trust with your customers.

 

Michael Pastore is the Director, Content Services at QuinStreet B2B Tech. This content originally appeared as a sponsored post on http://www.eweek.com/.

Learn more about how data governance can help with GDPR compliance by downloading the free white paper: GDPR and Your Business: A Call to Enhance Data Governance Expertise.

Data Governance and GDPR: GDPR and Your Business Whitepaper

Categories
Data Governance erwin Expert Blog

Data Governance & GDPR: How it Will Affect Your Business

If you’re a data professional, data governance and GDPR are likely at the top of your agenda right now.

Because if your organization exists within the European Union (EU) or trades with the EU, the General Data Protection Regulation (GDPR) will affect your operations.

Despite this fact, only 6% of organizations say they are “completely prepared” ahead of the mandate’s May 25 effective date, according to the 2018 State of Data Governance Report.

Perhaps some solace can be found in that 39% of those surveyed for the report indicate they are “somewhat prepared,” with 27% starting preparations.

But 11% indicate they are “not prepared at all,” and the most damning of revelations is that 17% of organizations believe GDPR does not affect them.

I’m afraid these folks and their organizations are misguided because any company in any industry is within GDPR’s reach. Even if only one EU citizen’s data is included within an organization’s database(s), compliance is mandatory.

So it’s important for organizations to understand exactly what they need to do before the deadline and the potential fines of up to €20 million or 4% of annual turnover, whichever is greater.

How Does GDPR Affect My Business

With the advent of any new regulation, it’s crucial that organizations know which elements of their organization are affected and what they need to do to stay compliant. Regarding the latter, the GDPR requires organizations to have a comprehensive and effective data governance strategy. In terms of the areas affected, organizations need to be aware of the following:

Personally Identifiable Information (PII)

GDPR introduces tighter regulations around the storage, management and transfer of PII. According to the GDPR, personal data is any information related to a person such as a name, a photo, an email address, bank details, updates on social networking websites, location details, medical information, or a computer IP address.

Personal data also comes in many forms and extends to the combination of different data elements that individually are not PII but contribute to PII status when consolidated.

Data governance allows organizations to more easily identify and classify PII and in turn, introduce appropriate measures to keep it safe.

Therefore, a good data governance solution should enable organizations to add and manage metadata – the data about data – regarding a unit of data’s sensitivity. It should also have strong data discoverability capabilities, and the ability to control access to data through user-based permissions.

Active Consent, Data Processing and the Right to Be Forgotten

GDPR also strengthens the conditions for consent, which must be clear and distinguishable from other matters and provided in an intelligible and easily accessible form, using clear and plain language. It must be as easy to withdraw consent as it is to give it.​

Data subjects also have the right to obtain confirmation as to whether their personal data is being processed, where and for what purpose. The data controller must provide a copy of said personal data in an electronic format – free of charge. This change is a dramatic shift in data transparency and consumer empowerment.

The right to be forgotten entitles the data subject to have the data controller erase his/her personal data, cease further dissemination of the data, and potentially have third parties halt processing of the data.

The information and processes required to address these restrictions can be found in the metadata and managed via metadata management tools – a key facet of data governance. Better management of such metadata is key to optimizing an organization’s data processing capabilities. Without such optimization, compliance with the GDPR-granted “right to be forgotten” can become too complex to effictively manage.

Gartner Magic Quadrant

Documenting Compliance and Data Breaches

GDPR also looks to curb data breaches that have become more extensive and frequent in recent years. Data’s value has sky-rocketed, making data-driven businesses targets of cyber threats.

Organizations must document what data they have, where it resides, the controls in place to protect it, and the measures that will be taken to address mistakes/breaches. In fact, data breach notification is mandatory within 72 hours if that breach is likely to “result in risk for the rights and freedoms of individuals.”

A comprehensive data governance strategy encompasses and enables the documentation process outlined above. However, a data governance strategy decreases the likelihood of such breaches occurring as it provides organizations with greater insight as to which data should be more closely guarded.

Data Governance and GDPR Compliance

Based on the results of the State of DG Report referenced at the beginning of this post, organizations aren’t as GDPR-ready as they should be. But there’s still time to act.

Data governance and GDPR go hand in hand. A strong data governance program is critical to the data visibility and categorization needed for GDPR compliance. And it will help in assessing and prioritizing data risks and enable easier verification of compliance with GDPR auditors.

Data governance enables an organization to discover, understand, govern and socialize its data assets – not just within IT but across the entire organization. Not only does it encompass data’s current iteration but also its entire lineage and connections through the data ecosystem.

Understanding data lineage is absolutely necessary in the context of GDPR. Take the right to be forgotten, for example. Such compliance requires an organization to locate all an individual’s PII and any information that can be cross-referenced with other data points to become PII.

With the right data governance approach and supporting technology, organizations can ensure GDPR compliance with their current, as-is architecture and data assets – and ensure new data sources and/or changes to the to-be architecture incorporate the appropriate controls.

Stakeholders across the enterprise need to be GDPR aware and enabled so that compliance is built in at a cultural level.

For more information about increasing your expertise in relation to data governance and GDPR, download our guide to managing GDPR with data governance.

Data Governance, GDPR and Your Business