Categories
erwin Expert Blog

Using Strategic Data Governance to Manage GDPR/CCPA Complexity

In light of recent, high-profile data breaches, it’s past-time we re-examined strategic data governance and its role in managing regulatory requirements.

News broke earlier this week of British Airways being fined 183 million pounds – or $228 million – by the U.K. for alleged violations of the European Union’s General Data Protection Regulation (GDPR). While not the first, it is the largest penalty levied since the GDPR went into effect in May 2018.

Given this, Oppenheimer & Co. cautions:

“European regulators could accelerate the crackdown on GDPR violators, which in turn could accelerate demand for GDPR readiness. Although the CCPA [California Consumer Privacy Act, the U.S. equivalent of GDPR] will not become effective until 2020, we believe that new developments in GDPR enforcement may influence the regulatory framework of the still fluid CCPA.”

With all the advance notice and significant chatter for GDPR/CCPA,  why aren’t organizations more prepared to deal with data regulations?

In a word? Complexity.

The complexity of regulatory requirements in and of themselves is aggravated by the complexity of the business and data landscapes within most enterprises.

So it’s important to understand how to use strategic data governance to manage the complexity of regulatory compliance and other business objectives …

Designing and Operationalizing Regulatory Compliance Strategy

It’s not easy to design and deploy compliance in an environment that’s not well understood and difficult in which to maneuver. First you need to analyze and design your compliance strategy and tactics, and then you need to operationalize them.

Modern, strategic data governance, which involves both IT and the business, enables organizations to plan and document how they will discover and understand their data within context, track its physical existence and lineage, and maximize its security, quality and value. It also helps enterprises put these strategic capabilities into action by:

  • Understanding their business, technology and data architectures and their inter-relationships, aligning them with their goals and defining the people, processes and technologies required to achieve compliance.
  • Creating and automating a curated enterprise data catalog, complete with physical assets, data models, data movement, data quality and on-demand lineage.
  • Activating their metadata to drive agile data preparation and governance through integrated data glossaries and dictionaries that associate policies to enable stakeholder data literacy.

Strategic Data Governance for GDPR/CCPA

Five Steps to GDPR/CCPA Compliance

With the right technology, GDPR/CCPA compliance can be automated and accelerated in these five steps:

  1. Catalog systems

Harvest, enrich/transform and catalog data from a wide array of sources to enable any stakeholder to see the interrelationships of data assets across the organization.

  1. Govern PII “at rest”

Classify, flag and socialize the use and governance of personally identifiable information regardless of where it is stored.

  1. Govern PII “in motion”

Scan, catalog and map personally identifiable information to understand how it moves inside and outside the organization and how it changes along the way.

  1. Manage policies and rules

Govern business terminology in addition to data policies and rules, depicting relationships to physical data catalogs and the applications that use them with lineage and impact analysis views.

  1. Strengthen data security

Identify regulatory risks and guide the fortification of network and encryption security standards and policies by understanding where all personally identifiable information is stored, processed and used.

How erwin Can Help

erwin is the only software provider with a complete, metadata-driven approach to data governance through our integrated enterprise modeling and data intelligence suites. We help customers overcome their data governance challenges, with risk management and regulatory compliance being primary concerns.

However, the erwin EDGE also delivers an “enterprise data governance experience” in terms of agile innovation and business transformation – from creating new products and services to keeping customers happy to generating more revenue.

Whatever your organization’s key drivers are, a strategic data governance approach – through  business process, enterprise architecture and data modeling combined with data cataloging and data literacy – is key to success in our modern, digital world.

If you’d like to get a handle on handling your data, you can sign up for a free, one-on-one demo of erwin Data Intelligence.

For more information on GDPR/CCPA, we’ve also published a white paper on the Regulatory Rationale for Integrating Data Management and Data Governance.

GDPR White Paper

Categories
erwin Expert Blog

Four Use Cases Proving the Benefits of Metadata-Driven Automation

Organization’s cannot hope to make the most out of a data-driven strategy, without at least some degree of metadata-driven automation.

The volume and variety of data has snowballed, and so has its velocity. As such, traditional – and mostly manual – processes associated with data management and data governance have broken down. They are time-consuming and prone to human error, making compliance, innovation and transformation initiatives more complicated, which is less than ideal in the information age.

So it’s safe to say that organizations can’t reap the rewards of their data without automation.

Data scientists and other data professionals can spend up to 80 percent of their time bogged down trying to understand source data or addressing errors and inconsistencies.

That’s time needed and better used for data analysis.

By implementing metadata-driven automation, organizations across industry can unleash the talents of their highly skilled, well paid data pros to focus on finding the goods: actionable insights that will fuel the business.

Metadata-Driven Automation

Metadata-Driven Automation in the BFSI Industry

The banking, financial services and insurance industry typically deals with higher data velocity and tighter regulations than most. This bureaucracy is rife with data management bottlenecks.

These bottlenecks are only made worse when organizations attempt to get by with systems and tools that are not purpose-built.

For example, manually managing data mappings for the enterprise data warehouse via MS Excel spreadsheets had become cumbersome and unsustainable for one BSFI company.

After embracing metadata-driven automation and custom code automation templates, it saved hundreds of thousands of dollars in code generation and development costs and achieved more work in less time with fewer resources. ROI on the automation solutions was realized within the first year.

Metadata-Driven Automation in the Pharmaceutical Industry

Despite its shortcomings, the Excel spreadsheet method for managing data mappings is common within many industries.

But with the amount of data organizations need to process in today’s business climate, this manual approach makes change management and determining end-to-end lineage a significant and time-consuming challenge.

One global pharmaceutical giant headquartered in the United States experienced such issues until it adopted metadata-driven automation. Then the pharma company was able to scan in all source and target system metadata and maintain it within a single repository. Users now view end-to-end data lineage from the source layer to the reporting layer within seconds.

On the whole, the implementation resulted in extraordinary time savings and a total cost reduction of 60 percent.

Metadata-Driven Automation in the Insurance Industry

Insurance is another industry that has to cope with high data velocity and stringent data regulations. Plus many organizations in this sector find that they’ve outgrown their systems.

For example, an insurance company using a CDMA product to centralize data mappings is probably missing certain critical features, such as versioning, impact analysis and lineage, which adds to costs, times to market and errors.

By adopting metadata-driven automation, organizations can standardize the pre-ETL data mapping process and better manage data integration through the change and release process. As a result, both internal data mapping and cross functional teams now have easy and fast web-based access to data mappings and valuable information like impact analysis and lineage.

Here is the story of a business that adopted such an approach and achieved operational excellence and a delivery time reduction by 80 percent, as well as achieving ROI within 12 months.

Metadata-Driven Automation for a Non-Profit

Another common issue cited by organizations using manual data mapping is ballooning complexity and subsequent confusion.

Any organization expanding its data-driven focus without sufficiently maturing data management initiative(s) will experience this at some point.

One of the world’s largest humanitarian organizations, with millions of members and volunteers operating all over the world, was confronted with this exact issue.

It recognized the need for a solution to standardize the pre-ETL data mapping process to make data integration more efficient and cost-effective.

With metadata-driven automation, the organization would be able to scan and store metadata and data dictionaries in a central repository, as well as manage the business definitions and data dictionary for legacy systems contributing data to the enterprise data warehouse.

By adopting such an approach, the organization realized time savings across all IT development and cross-functional testing teams. Additionally, they were able to more easily manage mappings, code sets, reference data and data validation rules.

Again, ROI was achieved within a year.

A Universal Solution for Metadata-Driven Automation

Metadata-driven automation is a capability any organization can benefit from – regardless of industry, as demonstrated by the various real-world use cases chronicled here.

The erwin Automation Framework is a key component of the erwin EDGE platform for comprehensive data management and data governance.

With it, data professionals realize these industry-agnostic benefits:

  • Centralized and standardized code management with all automation templates stored in a governed repository
  • Better quality code and minimized rework
  • Business-driven data movement and transformation specifications
  • Superior data movement job designs based on best practices
  • Greater agility and faster time-to-value in data preparation, deployment and governance
  • Cross-platform support of scripting languages and data movement technologies

Learn more about metadata-driven automation as it relates to data preparation and enterprise data mapping.

Join one our weekly erwin Mapping Manager demos.

Automate Data Mapping

Categories
erwin Expert Blog

Five Benefits of an Automation Framework for Data Governance

Organizations are responsible for governing more data than ever before, making a strong automation framework a necessity. But what exactly is an automation framework and why does it matter?

In most companies, an incredible amount of data flows from multiple sources in a variety of formats and is constantly being moved and federated across a changing system landscape.

Often these enterprises are heavily regulated, so they need a well-defined data integration model that helps avoid data discrepancies and removes barriers to enterprise business intelligence and other meaningful use.

IT teams need the ability to smoothly generate hundreds of mappings and ETL jobs. They need their data mappings to fall under governance and audit controls, with instant access to dynamic impact analysis and lineage.

With an automation framework, data professionals can meet these needs at a fraction of the cost of the traditional manual way.

In data governance terms, an automation framework refers to a metadata-driven universal code generator that works hand in hand with enterprise data mapping for:

  • Pre-ETL enterprise data mapping
  • Governing metadata
  • Governing and versioning source-to-target mappings throughout the lifecycle
  • Data lineage, impact analysis and business rules repositories
  • Automated code generation

Such automation enables organizations to bypass bottlenecks, including human error and the time required to complete these tasks manually.

In fact, being able to rely on automated and repeatable processes can result in up to 50 percent in design savings, up to 70 percent conversion savings and up to 70 percent acceleration in total project delivery.

So without further ado, here are the five key benefits of an automation framework for data governance.

Automation Framework

Benefits of an Automation Framework for Data Governance

  1. Creates simplicity, reliability, consistency and customization for the integrated development environment.

Code automation templates (CATs) can be created – for virtually any process and any tech platform – using the SDK scripting language or the solution’s published libraries to completely automate common, manual data integration tasks.

CATs are designed and developed by senior automation experts to ensure they are compliant with industry or corporate standards as well as with an organization’s best practice and design standards.

The 100-percent metadata-driven approach is critical to creating reliable and consistent CATs.

It is possible to scan, pull in and configure metadata sources and targets using standard or custom adapters and connectors for databases, ERP, cloud environments, files, data modeling, BI reports and Big Data to document data catalogs, data mappings, ETL (XML code) and even SQL procedures of any type.

  1. Provides blueprints anyone in the organization can use.

Stage DDL from source metadata for the target DBMS; profile and test SQL for test automation of data integration projects; generate source-to-target mappings and ETL jobs for leading ETL tools, among other capabilities.

It also can populate and maintain Big Data sets by generating PIG, Scoop, MapReduce, Spark, Python scripts and more.

  1. Incorporates data governance into the system development process.

An organization can achieve a more comprehensive and sustainable data governance initiative than it ever could with a homegrown solution.

An automation framework’s ability to automatically create, version, manage and document source-to-target mappings greatly matters both to data governance maturity and a shorter-time-to-value.

This eliminates duplication that occurs when project teams are siloed, as well as prevents the loss of knowledge capital due to employee attrition.

Another value capability is coordination between data governance and SDLC, including automated metadata harvesting and cataloging from a wide array of sources for real-time metadata synchronization with core data governance capabilities and artifacts.

  1. Proves the value of data lineage and impact analysis for governance and risk assessment.

Automated reverse-engineering of ETL code into natural language enables a more intuitive lineage view for data governance.

With end-to-end lineage, it is possible to view data movement from source to stage, stage to EDW, and on to a federation of marts and reporting structures, providing a comprehensive and detailed view of data in motion.

The process includes leveraging existing mapping documentation and auto-documented mappings to quickly render graphical source-to-target lineage views including transformation logic that can be shared across the enterprise.

Similarly, impact analysis – which involves data mapping and lineage across tables, columns, systems, business rules, projects, mappings and ETL processes – provides insight into potential data risks and enables fast and thorough remediation when needed.

Impact analysis across the organization while meeting regulatory compliance with industry regulators requires detailed data mapping and lineage.

THE REGULATORY RATIONALE FOR INTEGRATING DATA MANAGEMENT & DATA GOVERNANCE

  1. Supports a wide spectrum of business needs.

Intelligent automation delivers enhanced capability, increased efficiency and effective collaboration to every stakeholder in the data value chain: data stewards, architects, scientists, analysts; business intelligence developers, IT professionals and business consumers.

It makes it easier for them to handle jobs such as data warehousing by leveraging source-to-target mapping and ETL code generation and job standardization.

It’s easier to map, move and test data for regular maintenance of existing structures, movement from legacy systems to new systems during a merger or acquisition, or a modernization effort.

erwin’s Approach to Automation for Data Governance: The erwin Automation Framework

Mature and sustainable data governance requires collaboration from both IT and the business, backed by a technology platform that accelerates the time to data intelligence.

Part of the erwin EDGE portfolio for an “enterprise data governance experience,” the erwin Automation Framework transforms enterprise data into accurate and actionable insights by connecting all the pieces of the data management and data governance lifecycle.

 As with all erwin solutions, it embraces any data from anywhere (Any2) with automation for relational, unstructured, on-premise and cloud-based data assets and data movement specifications harvested and coupled with CATs.

If your organization would like to realize all the benefits explained above – and gain an “edge” in how it approaches data governance, you can start by joining one of our weekly demos for erwin Mapping Manager.

Automate Data Mapping

Categories
erwin Expert Blog

Top 10 Reasons to Automate Data Mapping and Data Preparation

Data preparation is notorious for being the most time-consuming area of data management. It’s also expensive.

“Surveys show the vast majority of time is spent on this repetitive task, with some estimates showing it takes up as much as 80% of a data professional’s time,” according to Information Week. And a Trifacta study notes that overreliance on IT resources for data preparation costs organizations billions.

The power of collecting your data can come in a variety of forms, but most often in IT shops around the world, it comes in a spreadsheet, or rather a collection of spreadsheets often numbering in the hundreds or thousands.

Most organizations, especially those competing in the digital economy, don’t have enough time or money for data management using manual processes. And outsourcing is also expensive, with inevitable delays because these vendors are dependent on manual processes too.

Automate Data Mapping

Taking the Time and Pain Out of Data Preparation: 10 Reasons to Automate Data Preparation/Data Mapping

  1. Governance and Infrastructure

Data governance and a strong IT infrastructure are critical in the valuation, creation, storage, use, archival and deletion of data. Beyond the simple ability to know where the data came from and whether or not it can be trusted, there is an element of statutory reporting and compliance that often requires a knowledge of how that same data (known or unknown, governed or not) has changed over time.

A design platform that allows for insights like data lineage, impact analysis, full history capture, and other data management features can provide a central hub from which everything can be learned and discovered about the data – whether a data lake, a data vault, or a traditional warehouse.

  1. Eliminating Human Error

In the traditional data management organization, excel spreadsheets are used to manage the incoming data design, or what is known as the “pre-ETL” mapping documentation – this does not lend to any sort of visibility or auditability. In fact, each unit of work represented in these ‘mapping documents’ becomes an independent variable in the overall system development lifecycle, and therefore nearly impossible to learn from much less standardize.

The key to creating accuracy and integrity in any exercise is to eliminate the opportunity for human error – which does not mean eliminating humans from the process but incorporating the right tools to reduce the likelihood of error as the human beings apply their thought processes to the work.  

  1. Completeness

The ability to scan and import from a broad range of sources and formats, as well as automated change tracking, means that you will always be able to import your data from wherever it lives and track all of the changes to that data over time.

  1. Adaptability

Centralized design, immediate lineage and impact analysis, and change activity logging means that you will always have the answer readily available, or a few clicks away.  Subsets of data can be identified and generated via predefined templates, generic designs generated from standard mapping documents, and pushed via ETL process for faster processing via automation templates.

  1. Accuracy

Out-of-the-box capabilities to map your data from source to report, make reconciliation and validation a snap, with auditability and traceability built-in.  Build a full array of validation rules that can be cross checked with the design mappings in a centralized repository.

  1. Timeliness

The ability to be agile and reactive is important – being good at being reactive doesn’t sound like a quality that deserves a pat on the back, but in the case of regulatory requirements, it is paramount.

  1. Comprehensiveness

Access to all of the underlying metadata, source-to-report design mappings, source and target repositories, you have the power to create reports within your reporting layer that have a traceable origin and can be easily explained to both IT, business, and regulatory stakeholders.

  1. Clarity

The requirements inform the design, the design platform puts those to action, and the reporting structures are fed the right data to create the right information at the right time via nearly any reporting platform, whether mainstream commercial or homegrown.

  1. Frequency

Adaptation is the key to meeting any frequency interval. Centralized designs, automated ETL patterns that feed your database schemas and reporting structures will allow for cyclical changes to be made and implemented in half the time of using conventional means. Getting beyond the spreadsheet, enabling pattern-based ETL, and schema population are ways to ensure you will be ready, whenever the need arises to show an audit trail of the change process and clearly articulate who did what and when through the system development lifecycle.

  1. Business-Friendly

A user interface designed to be business-friendly means there’s no need to be a data integration specialist to review the common practices outlined and “passively enforced” throughout the tool. Once a process is defined, rules implemented, and templates established, there is little opportunity for error or deviation from the overall process. A diverse set of role-based security options means that everyone can collaborate, learn and audit while maintaining the integrity of the underlying process components.

Faster, More Accurate Analysis with Fewer People

What if you could get more accurate data preparation 50% faster and double your analysis with less people?

erwin Mapping Manager (MM) is a patented solution that automates data mapping throughout the enterprise data integration lifecycle, providing data visibility, lineage and governance – freeing up that 80% of a data professional’s time to put that data to work.

With erwin MM, data integration engineers can design and reverse-engineer the movement of data implemented as ETL/ELT operations and stored procedures, building mappings between source and target data assets and designing the transformation logic between them. These designs then can be exported to most ETL and data asset technologies for implementation.

erwin MM is 100% metadata-driven and used to define and drive standards across enterprise integration projects, enable data and process audits, improve data quality, streamline downstream work flows, increase productivity (especially over geographically dispersed teams) and give project teams, IT leadership and management visibility into the ‘real’ status of integration and ETL migration projects.

If an automated data preparation/mapping solution sounds good to you, please check out erwin MM here.

Solving the Enterprise Data Dilemma