Categories
erwin Expert Blog

The Unified Data Platform – Connecting Everything That Matters

Businesses stand to gain a lot from a unified data platform.

This decade has seen data-driven leaders dominate their respective markets and inspire other organizations across the board to use data to fuel their businesses, leveraging this strategic asset to create more value below the surface. It’s even been dubbed “the new oil,” but data is arguably more valuable than the analogy suggests.

Data governance (DG) is a key component of the data value chain because it connects people, processes and technology as they relate to the creation and use of data. It equips organizations to better deal with  increasing data volumes, the variety of data sources, and the speed in which data is processed.

But for an organization to realize and maximize its true data-driven potential, a unified data platform is required. Only then can all data assets be discovered, understood, governed and socialized to produce the desired business outcomes while also reducing data-related risks.

Benefits of a Unified Data Platform

Data governance can’t succeed in a bubble; it has to be connected to the rest of the enterprise. Whether strategic, such as risk and compliance management, or operational, like a centralized help desk, your data governance framework should span and support the entire enterprise and its objectives, which it can’t do from a silo.

Let’s look at some of the benefits of a unified data platform with data governance as the key connection point.

Understand current and future state architecture with business-focused outcomes:

A unified data platform with a single metadata repository connects data governance to the roles, goals strategies and KPIs of the enterprise. Through integrated enterprise architecture modeling, organizations can capture, analyze and incorporate the structure and priorities of the enterprise and related initiatives.

This capability allows you to plan, align, deploy and communicate a high-impact data governance framework and roadmap that sets manageable expectations and measures success with metrics important to the business.

Document capabilities and processes and understand critical paths:

A unified data platform connects data governance to what you do as a business and the details of how you do it. It enables organizations to document and integrate their business capabilities and operational processes with the critical data that serves them.

It also provides visibility and control by identifying the critical paths that will have the greatest impacts on the business.

Realize the value of your organization’s data:

A unified data platform connects data governance to specific business use cases. The value of data is realized by combining different elements to answer a business question or meet a specific requirement. Conceptual and logical schemas and models provide a much richer understanding of how data is related and combined to drive business value.

2020 Data Governance and Automation Report

Harmonize data governance and data management to drive high-quality deliverables:

A unified data platform connects data governance to the orchestration and preparation of data to drive the business, governing data throughout the entire lifecycle – from creation to consumption.

Governing the data management processes that make data available is of equal importance. By harmonizing the data governance and data management lifecycles, organizations can drive high-quality deliverables that are governed from day one.

Promote a business glossary for unanimous understanding of data terminology:

A unified data platform connects data governance to the language of the business when discussing and describing data. Understanding the terminology and semantic meaning of data from a business perspective is imperative, but most business consumers of data don’t have technical backgrounds.

A business glossary promotes data fluency across the organization and vital collaboration between different stakeholders within the data value chain, ensuring all data-related initiatives are aligned and business-driven.

Instill a culture of personal responsibility for data governance:

A unified data platform is inherently connected to the policies, procedures and business rules that inform and govern the data lifecycle. The centralized management and visibility afforded by linking policies and business rules at every level of the data lifecycle will improve data quality, reduce expensive re-work, and improve the ideation and consumption of data by the business.

Business users will know how to use (and how not to use) data, while technical practitioners will have a clear view of the controls and mechanisms required when building the infrastructure that serves up that data.

Better understand the impact of change:

Data governance should be connected to the use of data across roles, organizations, processes, capabilities, dashboards and applications. Proactive impact analysis is key to efficient and effective data strategy. However, most solutions don’t tell the whole story when it comes to data’s business impact.

By adopting a unified data platform, organizations can extend impact analysis well beyond data stores and data lineage for true visibility into who, what, where and how the impact will be felt, breaking down organizational silos.

Getting the Competitive “EDGE”

The erwin EDGE delivers an “enterprise data governance experience” in which every component of the data value chain is connected.

Now with data mapping, it unifies data preparation, enterprise modeling and data governance to simplify the entire data management and governance lifecycle.

Both IT and the business have access to an accurate, high-quality and real-time data pipeline that fuels regulatory compliance, innovation and transformation initiatives with accurate and actionable insights.

Categories
erwin Expert Blog

Healthy Co-Dependency: Data Management and Data Governance

Data management and data governance are now more important than ever before. The hyper competitive nature of data-driven business means organizations need to get more out of their data than ever before – and fast.

A few data-driven exemplars have led the way, turning data into actionable insights that influence everything from corporate structure to new products and pricing. “Few” being the operative word.

It’s true, data-driven business is big business. Huge actually. But it’s dominated by a handful of organizations that realized early on what a powerful and disruptive force data can be.

The benefits of such data-driven strategies speak for themselves: Netflix has replaced Blockbuster, and Uber continues to shake up the taxi business. Organizations indiscriminate of industry are following suit, fighting to become the next big, disruptive players.

But in many cases, these attempts have failed or are on the verge of doing so.

Now with the General Data Protection Regulation (GDPR) in effect, data that is unaccounted for is a potential data disaster waiting to happen.

So organizations need to understand that getting more out of their data isn’t necessarily about collecting more data. It’s about unlocking the value of the data they already have.

Data Management and Data Governance Co-Dependency

The Enterprise Data Dilemma

However, most organizations don’t know exactly what data they have or even where some of it is. And some of the data they can account for is going to waste because they don’t have the means to process it. This is especially true of unstructured data types, which organizations are collecting more frequently.

Considering that 73 percent of company data goes unused, it’s safe to assume your organization is dealing with some if not all of these issues.

Big picture, this means your enterprise is missing out on thousands, perhaps millions in revenue.

The smaller picture? You’re struggling to establish a single source of data truth, which contributes to a host of problems:

  • Inaccurate analysis and discrepancies in departmental reporting
  • Inability to manage the amount and variety of data your organization collects
  • Duplications and redundancies in processes
  • Issues determining data ownership, lineage and access
  • Achieving and sustaining compliance

To avoid such circumstances and get more value out of data, organizations need to harmonize their approach to data management and data governance, using a platform of established tools that work in tandem while also enabling collaboration across the enterprise.

Data management drives the design, deployment and operation of systems that deliver operational data assets for analytics purposes.

Data governance delivers these data assets within a business context, tracking their physical existence and lineage, and maximizing their security, quality and value.

Although these two disciplines approach data from different perspectives (IT-driven and business-oriented), they depend on each other. And this co-dependency helps an organization make the most of its data.

The P-M-G Hub

Together, data management and data governance form a critical hub for data preparation, modeling and data governance. How?

It starts with a real-time, accurate picture of the data landscape, including “data at rest” in databases, data warehouses and data lakes and “data in motion” as it is integrated with and used by key applications. That landscape also must be controlled to facilitate collaboration and limit risk.

But knowing what data you have and where it lives is complicated, so you need to create and sustain an enterprise-wide view of and easy access to underlying metadata. That’s a tall order with numerous data types and data sources that were never designed to work together and data infrastructures that have been cobbled together over time with disparate technologies, poor documentation and little thought for downstream integration. So the applications and initiatives that depend on a solid data infrastructure may be compromised, and data analysis based on faulty insights.

However, these issues can be addressed with a strong data management strategy and technology to enable the data quality required by the business, which encompasses data cataloging (integration of data sets from various sources), mapping, versioning, business rules and glossaries maintenance and metadata management (associations and lineage).

Being able to pinpoint what data exists and where must be accompanied by an agreed-upon business understanding of what it all means in common terms that are adopted across the enterprise. Having that consistency is the only way to assure that insights generated by analyses are useful and actionable, regardless of business department or user exploring a question. Additionally, policies, processes and tools that define and control access to data by roles and across workflows are critical for security purposes.

These issues can be addressed with a comprehensive data governance strategy and technology to determine master data sets, discover the impact of potential glossary changes across the enterprise, audit and score adherence to rules, discover risks, and appropriately and cost-effectively apply security to data flows, as well as publish data to people/roles in ways that are meaningful to them.

Data Management and Data Governance: Play Together, Stay Together

When data management and data governance work in concert empowered by the right technology, they inform, guide and optimize each other. The result for an organization that takes such a harmonized approach is automated, real-time, high-quality data pipeline.

Then all stakeholders — data scientists, data stewards, ETL developers, enterprise architects, business analysts, compliance officers, CDOs and CEOs – can access the data they’re authorized to use and base strategic decisions on what is now a full inventory of reliable information.

The erwin EDGE creates an “enterprise data governance experience” through integrated data mapping, business process modeling, enterprise architecture modeling, data modeling and data governance. No other software platform on the market touches every aspect of the data management and data governance lifecycle to automate and accelerate the speed to actionable business insights.