Categories
erwin Expert Blog

Business Process Can Make or Break Data Governance

Data governance isn’t a one-off project with a defined endpoint. It’s an on-going initiative that requires active engagement from executives and business leaders.

Data governance, today, comes back to the ability to understand critical enterprise data within a business context, track its physical existence and lineage, and maximize its value while ensuring quality and security.

Free Data Modeling Best Practice Guide

Historically, little attention has focused on what can literally make or break any data governance initiative — turning it from a launchpad for competitive advantage to a recipe for disaster. Data governance success hinges on business process modeling and enterprise architecture.

To put it even more bluntly, successful data governance* must start with business process modeling and analysis.

*See: Three Steps to Successful & Sustainable Data Governance Implementation

Business Process Data Governance

Passing the Data Governance Ball

For years, data governance was the volleyball passed back and forth over the net between IT and the business, with neither side truly owning it. However, once an organization understands that IT and the business are both responsible for data, it needs to develop a comprehensive, holistic strategy for data governance that is capable of four things:

  1. Reaching every stakeholder in the process
  2. Providing a platform for understanding and governing trusted data assets
  3. Delivering the greatest benefit from data wherever it lives, while minimizing risk
  4. Helping users understand the impact of changes made to a specific data element across the enterprise.

To accomplish this, a modern data governance strategy needs to be interdisciplinary to break down traditional silos. Enterprise architecture is important because it aligns IT and the business, mapping a company’s applications and the associated technologies and data to the business functions and value streams they enable.

Ovum Market Radar: Enterprise Architecture

The business process and analysis component is vital because it defines how the business operates and ensures employees understand and are accountable for carrying out the processes for which they are responsible. Enterprises can clearly define, map and analyze workflows and build models to drive process improvement, as well as identify business practices susceptible to the greatest security, compliance or other risks and where controls are most needed to mitigate exposures.

Slow Down, Ask Questions

In a rush to implement a data governance methodology and system, organizations can forget that a system must serve a process – and be governed/controlled by one.

To choose the correct system and implement it effectively and efficiently, you must know – in every detail – all the processes it will impact. You need to ask these important questions:

  1. How will it impact them?
  2. Who needs to be involved?
  3. When do they need to be involved?

These questions are the same ones we ask in data governance. They involve impact analysis, ownership and accountability, control and traceability – all of which effectively documented and managed business processes enable.

Data sets are not important in and of themselves. Data sets become important in terms of how they are used, who uses them and what their use is – and all this information is described in the processes that generate, manipulate and use them. So unless we know what those processes are, how can any data governance implementation be complete or successful?

Processes need to be open and shared in a concise, consistent way so all parts of the organization can investigate, ask questions, and then add their feedback and information layers. In other words, processes need to be alive and central to the organization because only then will the use of data and data governance be truly effective.

A Failure to Communicate

Consider this scenario: We’ve perfectly captured our data lineage, so we know what our data sets mean, how they’re connected, and who’s responsible for them – not a simple task but a massive win for any organization. Now a breach occurs. Will any of the above information tell us why it happened? Or where? No! It will tell us what else is affected and who can manage the data layer(s), but unless we find and address the process failure that led to the breach, it is guaranteed to happen again.

By knowing where data is used – the processes that use and manage it – we can quickly, even instantly, identify where a failure occurs. Starting with data lineage (meaning our forensic analysis starts from our data governance system), we can identify the source and destination processes and the associated impacts throughout the organization.

We can know which processes need to change and how. We can anticipate the pending disruptions to our operations and, more to the point, the costs involved in mitigating and/or addressing them.

But knowing all the above requires that our processes – our essential and operational business architecture – be accurately captured and modelled. Instituting data governance without processes is like building a castle on sand.

Rethinking Business Process Modeling and Analysis

Modern organizations need a business process modeling and analysis tool with easy access to all the operational layers across the organization – from high-level business architecture all the way down to data.

Such a system should be flexible, adjustable, easy-to-use and capable of supporting multiple layers simultaneously, allowing users to start in their comfort zones and mature as they work toward their organization’s goals.

The erwin EDGE is one of the most comprehensive software platforms for managing an organization’s data governance and business process initiatives, as well as the whole data architecture. It allows natural, organic growth throughout the organization and the assimilation of data governance and business process management under the same platform provides a unique data governance experience because of its integrated, collaborative approach.

Start your free, cloud-based trial of erwin Business Process and see how some of the world’s largest enterprises have benefited from its centralized repository and integrated, role-based views.

We’d also be happy to show you our data governance software, which includes data cataloging and data literacy capabilities.

Enterprise Architecture Business Process Trial

Categories
erwin Expert Blog

Defining DG: What Can Data Governance Do for You?

Data governance (DG) is becoming more commonplace because of data-driven business, yet defining DG and putting into sound practice is still difficult for many organizations.

Defining DG

The absence of a standard approach to defining DG could be down to its history of missed expectations, false starts and negative perceptions about it being expensive, intrusive, impeding innovation and not delivering any value. Without success stories to point to, the best way of doing and defining DG wasn’t clear.

On the flip side, the absence of a standard approach to defining DG could be the reason for its history of lacklustre implementation efforts, because those responsible for overseeing it had different ideas about what should be done.

Therefore, it’s been difficult to fully fund a data governance initiative that is underpinned by an effective data management capability. And many organizations don’t distinguish between data governance and data management, using the terms interchangeably and so adding to the confusion.

Defining DG: The Data Governance Conundrum

While research indicates most view data governance as “critically important” or they recognize the value of data, the large percentage without a formal data governance strategy in place indicates there are still significant teething problems.

How Important is Data Governance

And that’s the data governance conundrum. It is essential but unwanted and/or painful.

It is a complex chore, so organizations have lacked the motivation to start and effectively sustain it. But faced with the General Data Protection Regulation (GDPR) and other compliance requirements, they have been doing the bare minimum to avoid the fines and reputational damage.

And arguably, herein lies the problem. Organizations look at data governance as something they have to do rather than seeing what it could do for them.

Data governance has its roots in the structure of business terms and technical metadata, but it has tendrils and deep associations with many other components of a data management strategy and should serve as the foundation of that platform.

With data governance at the heart of data management, data can be discovered and made available throughout the organization for both IT and business stakeholders with approved access. This means enterprise architecture, business process, data modeling and data mapping all can draw from a central metadata repository for a single source of data truth, which improves data quality, trust and use to support organizational objectives.

But this “data nirvana” requires a change in approach to data governance. First, recognizing that Data Governance 1.0 was made for a different time when the volume, variety and velocity of the data an organization had to manage was far lower and when data governance’s reach only extended to cataloging data to support search and discovery. 

Data Governance Evolution

Modern data governance needs to meet the needs of data-driven business. We call this adaptation “Evolving DG.” It is the journey to a cost-effective, mature, repeatable process that permeates the whole organization.

The primary components of Evolving DG are:

  • Evaluate
  • Plan
  • Configure
  • Deliver
  • Feedback

The final step in such an evolution is the implementation of the erwin Enterprise Data Governance Experience (EDGE) platform.

The erwin EDGE places data governance at the heart of the larger data management suite. By unifying the data management suite at a fundamental level, an organization’s data is no longer marred by departmental and software silos. It brings together both IT and the business for data-driven insights, regulatory compliance, agile innovation and business transformation.

It allows every critical piece of the data management and data governance lifecycle to draw from a single source of data truth and ensure quality throughout the data pipeline, helping organizations achieve their strategic objectives including:

  • Operational efficiency
  • Revenue growth
  • Compliance, security and privacy
  • Increased customer satisfaction
  • Improved decision-making

To learn how you can evolve your data governance practice and get an EDGE on your competition, click here.

Solving the Enterprise Data Dilemma

Categories
erwin Expert Blog

Why Data Governance is the Key to Better Decision-Making

The ability to quickly collect vast amounts of data, analyze it, and then use what you’ve learned to help foster better decision-making is the dream of many a business executive. But like any number of things that can be summarized in a single sentence, it’s much harder to execute on such a vision than it might first appear.

According to Forrester, 74 percent of firms say they want to be “data-driven,” but only 29 percent say they are good at connecting analytics to action. Consider this: Forrester found that business satisfaction with analytics dropped by 21 percent between 2014 and 2015 – a period of great promise and great investment in Big Data. In other words, the more data businesses were collecting and mining, the less happy they were with their analytics.

A number of factors are potentially at play here, including the analytics software, the culture of the business, and the skill sets of the people using the data. But your analytics applications and the conclusions you draw from your analysis are only as good as the data that is collected and analyzed. Collecting, safeguarding and mining large amounts of data isn’t an inexpensive exercise, and as the saying goes, “garbage in, garbage out.”

“It’s a big investment and if people don’t trust data, they won’t use things like business intelligence tools because they won’t have faith in what they tell them,” says Danny Sandwell, director of product marketing at erwin, Inc.

Using data to inform business decisions is hardly new, of course. The modern idea of market research dates back to the 1920s, and ever since businesses have collected, analyzed and drawn conclusions from information they draw from customers or prospective customers.

The difference today, as you might expect, is the amount of data and how it’s collected. Data is generated by machines large and small, by people, and by old-fashioned market research. It enters today’s businesses from all angles, at lightning speed, and can, in many cases, be available for instant analysis.

As the volume and velocity of data increases, overload becomes a potential problem. Unless the business has a strategic plan for data governance, decisions around where the data is stored, who and what can access it, and how it can be used, becomes increasingly difficult to understand.

Not every business collects massive amounts of data like Facebook and Yahoo, but recent headlines demonstrate how those companies’ inability to govern data is harming their reputations and bottom lines. For Facebook, it was the revelation that the data of 87 million users was improperly obtained to influence the 2016 U. S. presidential election. For Yahoo, the U.S. Securities and Exchange Commission (SEC) levied a $35 million fine for failure to disclose a data breach in a timely manner.

In both the Facebook and Yahoo cases, the misuse or failure to protect data was one problem. Their inability to quickly quantify the scope of the problem and disclose the details made a big issue even worse – and kept it in the headlines even longer.

The issues of data security, data privacy and data governance may not be top of mind for some business users, but these issues manifest themselves in a number of ways that affect what they do on a daily basis. Think of it this way: somewhere in all of the data your organization collects, a piece of information that can support or refute a decision you’re about to make is likely there. Can you find it? Can you trust it?

If the answer to these questions is “no,” then it won’t be easy for your organization to make data-driven decisions.

Better Decision-Making - Data Governance

Powering Better Decision-Making with Data Governance

Nearly half (45 percent) of the respondents to a November 2017 survey by erwin and UBM said better decision-making was one of the factors driving their data governance initiatives.

Data governance helps businesses understand what data they have, how good it is, where it is, and how it’s used. A lot of people are talking about data governance today, and some are putting that talk into action. The erwin/UBM survey found that 52 percent of respondents say data is critically important to their organization and they have a formal data governance strategy in place. But almost as many respondents (46 percent) say they recognize the value of data to their organization but don’t have a formal governance strategy.

Many early attempts at instituting data governance failed to deliver results. They were narrowly focused, and their proponents often had difficulty articulating the value of data governance to the organization, making it difficult to secure budget. Some organizations even understood data governance as a type of data security, locking up data so tightly that the people who wanted to use it to foster better decision-making had trouble getting access.

Issues of ownership also stymied early data governance efforts, as IT and the business couldn’t agree on which side was responsible for a process that affects both on a regular basis. Today, organizations are better equipped to resolve issues of ownership, thanks in large part to a new corporate structure that recognizes how important data is to modern businesses. Roles like chief data officer (CDO), which increasingly sits on the business side, and the data protection officer (DPO), are more common than they were a few years ago.

A modern data governance strategy works a lot like data itself – it permeates the business and its infrastructure. It is part of the enterprise architecture, the business processes, and it help organizations better understand the relationships between data assets using techniques like visualization. Perhaps most important, a modern approach to data governance is ongoing, because organizations and their data are constantly changing and transforming, so their approach to data governance can’t sit still.

As you might expect, better visibility into your data goes a long way toward using that data to make more informed decisions. There is, however, another advantage to the visibility offered by a holistic data governance strategy: it helps you better understand what you don’t know.

By helping businesses understand the areas where they can improve their data collection, data governance helps organizations continually work to create better data, which manifests itself in real business advantages, like better decision-making and top-notch customer experiences, all of which will help grow the business.

Michael Pastore is the Director, Content Services at QuinStreet B2B Tech. This content originally appeared as a sponsored post on http://www.eweek.com/.

Previous posts:

You can determine how effective your current data governance initiative is by taking erwin’s DG RediChek.

Take the DG RediChek