Categories
erwin Expert Blog

Managing Emerging Technology Disruption with Enterprise Architecture

Emerging technology has always played an important role in business transformation. In the race to collect and analyze data, provide superior customer experiences, and manage resources, new technologies always interest IT and business leaders.

KPMG’s The Changing Landscape of Disruptive Technologies found that today’s businesses are showing the most interest in emerging technology like the Internet of Things (IoT), artificial intelligence (AI) and robotics. Other emerging technologies that are making headlines include natural language processing (NLP) and blockchain.

In many cases, emerging technologies such as these are not fully embedded into business environments. Before they enter production, organizations need to test and pilot their projects to help answer some important questions:

  • How do these technologies disrupt?
  • How do they provide value?

Enterprise Architecture’s Role in Managing Emerging Technology

Pilot projects that take a small number of incremental steps, with small funding increases along the way, help provide answers to these questions. If the pilot proves successful, it’s then up to the enterprise architecture team to explore what it takes to integrate these technologies into the IT environment.

This is the point where new technologies go from “emerging technologies” to becoming another solution in the stack the organization relies on to create the business outcomes it’s seeking.

One of the easiest, quickest ways to try to pilot and put new technologies into production is to use cloud-based services. All of the major public cloud platform providers have AI and machine learning capabilities.

Integrating new technologies based in the cloud will change the way the enterprise architecture team models the IT environment, but that’s actually a good thing.

Modeling can help organizations understand the complex integrations that bring cloud services into the organization, and help them better understand the service level agreements (SLAs), security requirements and contracts with cloud partners.

When done right, enterprise architecture modeling also will help the organization better understand the value of emerging technology and even cloud migrations that increasingly accompany them. Once again, modeling helps answer important questions, such as:

  • Does the model demonstrate the benefits that the business expects from the cloud?
  • Do the benefits remain even if some legacy apps and infrastructure need to remain on premise?
  • What type of savings do you see if you can’t consolidate enough close an entire data center?
  • How does the risk change?

Many of the emerging technologies garnering attention today are on their way to becoming a standard part of the technology stack. But just as the web came before mobility, and mobility came before AI,  other technologies will soon follow in their footsteps.

To most efficiently evaluate these technologies and decide if they are right for the business, organizations need to provide visibility to both their enterprise architecture and business process teams so everyone understands how their environment and outcomes will change.

When the enterprise architecture and business process teams use a common platform and model the same data, their results will be more accurate and their collaboration seamless. This will cut significant time off the process of piloting, deploying and seeing results.

Outcomes like more profitable products and better customer experiences are the ultimate business goals. Getting there first is important, but only if everything runs smoothly on the customer side. The disruption of new technologies should take place behind the scenes, after all.

And that’s where investing in pilot programs and enterprise architecture modeling demonstrate value as you put emerging technology to work.

Emerging technology - Data-driven business transformation

Categories
erwin Expert Blog

Solving the Enterprise Data Dilemma

Due to the adoption of data-driven business, organizations across the board are facing their own enterprise data dilemmas.

This week erwin announced its acquisition of metadata management and data governance provider AnalytiX DS. The combined company touches every piece of the data management and governance lifecycle, enabling enterprises to fuel automated, high-quality data pipelines for faster speed to accurate, actionable insights.

Why Is This a Big Deal?

From digital transformation to AI, and everything in between, organizations are flooded with data. So, companies are investing heavily in initiatives to use all the data at their disposal, but they face some challenges. Chiefly, deriving meaningful insights from their data – and turning them into actions that improve the bottom line.

This enterprise data dilemma stems from three important but difficult questions to answer: What data do we have? Where is it? And how do we get value from it?

Large enterprises use thousands of unharvested, undocumented databases, applications, ETL processes and procedural code that make it difficult to gather business intelligence, conduct IT audits, and ensure regulatory compliance – not to mention accomplish other objectives around customer satisfaction, revenue growth and overall efficiency and decision-making.

The lack of visibility and control around “data at rest” combined with “data in motion”, as well as difficulties with legacy architectures, means these organizations spend more time finding the data they need rather than using it to produce meaningful business outcomes.

To remedy this, enterprises need smarter and faster data management and data governance capabilities, including the ability to efficiently catalog and document their systems, processes and the associated data without errors. In addition, business and IT must collaborate outside their traditional operational silos.

But this coveted state of data nirvana isn’t possible without the right approach and technology platform.

Enterprise Data: Making the Data Management-Data Governance Love Connection

Enterprise Data: Making the Data Management-Data Governance Love Connection

Bringing together data management and data governance delivers greater efficiencies to technical users and better analytics to business users. It’s like two sides of the same coin:

  • Data management drives the design, deployment and operation of systems that deliver operational and analytical data assets.
  • Data governance delivers these data assets within a business context, tracks their physical existence and lineage, and maximizes their security, quality and value.

Although these disciplines approach data from different perspectives and are used to produce different outcomes, they have a lot in common. Both require a real-time, accurate picture of an organization’s data landscape, including data at rest in data warehouses and data lakes and data in motion as it is integrated with and used by key applications.

However, creating and maintaining this metadata landscape is challenging because this data in its various forms and from numerous sources was never designed to work in concert. Data infrastructures have been cobbled together over time with disparate technologies, poor documentation and little thought for downstream integration, so the applications and initiatives that depend on data infrastructure are often out-of-date and inaccurate, rendering faulty insights and analyses.

Organizations need to know what data they have and where it’s located, where it came from and how it got there, what it means in common business terms [or standardized business terms] and be able to transform it into useful information they can act on – all while controlling its access.

To support the total enterprise data management and governance lifecycle, they need an automated, real-time, high-quality data pipeline. Then every stakeholder – data scientist, ETL developer, enterprise architect, business analyst, compliance officer, CDO and CEO – can fuel the desired outcomes with reliable information on which to base strategic decisions.

Enterprise Data: Creating Your “EDGE”

At the end of the day, all industries are in the data business and all employees are data people. The success of an organization is not measured by how much data it has, but by how well it’s used.

Data governance enables organizations to use their data to fuel compliance, innovation and transformation initiatives with greater agility, efficiency and cost-effectiveness.

Organizations need to understand their data from different perspectives, identify how it flows through and impacts the business, aligns this business view with a technical view of the data management infrastructure, and synchronizes efforts across both disciplines for accuracy, agility and efficiency in building a data capability that impacts the business in a meaningful and sustainable fashion.

The persona-based erwin EDGE creates an “enterprise data governance experience” that facilitates collaboration between both IT and the business to discover, understand and unlock the value of data both at rest and in motion.

By bringing together enterprise architecture, business process, data mapping and data modeling, erwin’s approach to data governance enables organizations to get a handle on how they handle their data. With the broadest set of metadata connectors and automated code generation, data mapping and cataloging tools, the erwin EDGE Platform simplifies the total data management and data governance lifecycle.

This single, integrated solution makes it possible to gather business intelligence, conduct IT audits, ensure regulatory compliance and accomplish any other organizational objective by fueling an automated, high-quality and real-time data pipeline.

With the erwin EDGE, data management and data governance are unified and mutually supportive, with one hand aware and informed by the efforts of the other to:

  • Discover data: Identify and integrate metadata from various data management silos.
  • Harvest data: Automate the collection of metadata from various data management silos and consolidate it into a single source.
  • Structure data: Connect physical metadata to specific business terms and definitions and reusable design standards.
  • Analyze data: Understand how data relates to the business and what attributes it has.
  • Map data flows: Identify where to integrate data and track how it moves and transforms.
  • Govern data: Develop a governance model to manage standards and policies and set best practices.
  • Socialize data: Enable stakeholders to see data in one place and in the context of their roles.

An integrated solution with data preparation, modeling and governance helps businesses reach data governance maturity – which equals a role-based, collaborative data governance system that serves both IT and business users equally. Such maturity may not happen overnight, but it will ultimately deliver the accurate and actionable insights your organization needs to compete and win.

Your journey to data nirvana begins with a demo of the enhanced erwin Data Governance solution. Register now.

erwin ADS webinar

Categories
erwin Expert Blog

Data Governance 2.0: Biggest Data Shakeups to Watch in 2018

This year we’ll see some huge changes in how we collect, store and use data, with Data Governance 2.0 at the epicenter. For many organizations, these changes will be reactive, as they have to adapt to new regulations. Others will use regulatory change as a catalyst to be proactive with their data. Ideally, you’ll want to be in the latter category.

Data-driven businesses and their relevant industries are experiencing unprecedented rates of change.

Not only has the amount of data exploded in recent years, we’re now seeing the amount of insights data provides increase too. In essence, we’re finding smaller units of data more useful, but also collecting more than ever before.

At present, data opportunities are seemingly boundless, and we’ve barely begun to scratch the surface. So here are some of the biggest data shakeups to expect in 2018.

2018 data governance 2.0

GDPR

The General Data Protection Regulation (GDPR) has organizations scrambling. Penalties for non-compliance go into immediate effect on May 25, with hefty fines – up to €20 million or 4 percent of the company’s global annual turnover, whichever is greater.

Although it’s a European mandate, the fact is that all organizations trading with Europe, not just those based within the continent, must comply. Because of this, we’re seeing a global effort to introduce new policies, procedures and systems to prepare on a scale we haven’t seen since Y2K.

It’s easy to view mandated change of this nature as a burden. But the change is well overdue – both from a regulatory and commercial point of view.

In terms of regulation, a globalized approach had to be introduced. Data doesn’t adhere to borders in the same way as physical materials, and conflicting standards within different states, countries and continents have made sufficient regulation difficult.

In terms of business, many organizations have stifled their digital transformation efforts to become data-driven, neglecting to properly govern the data that would enable it. GDPR requires a collaborative approach to data governance (DG), and when done right, will add value as well as achieve compliance.

Rise of Data Governance 2.0

Data Governance 1.0 has failed to gain a foothold because of its siloed, un-collaborative nature. It lacks focus on business outcomes, so business leaders have struggled to see the value in it. Therefore, IT has been responsible for cataloging data elements to support search and discovery, yet they rarely understand the data’s context due to being removed from the operational side of the business. This means data is often incomplete and of poor quality, making effective data-driven business impossible.

Company-wide responsibility for data governance, encouraged by the new standards of regulation, stand to fundamentally change the way businesses view data governance. Data Governance 2.0 and its collaborative approach will become the new normal, meaning those with the most to gain from data and its insights will be directly involved in its governance.

This means more buy-in from C-level executives, line managers, etc. It means greater accountability, as well as improved discoverability and traceability. Most of all, it means better data quality that leads to faster, better decisions made with more confidence.

Escalated Digital Transformation

Digital transformation and its prominence won’t diminish this year. In fact, thanks to Data Governance 2.0, digital transformation is poised to accelerate – not slow down.

Organizations that commit to data governance beyond just compliance will reap the rewards. With a stronger data governance foundation, organizations undergoing digital transformation will enjoy a number of significant benefits, including better decision making, greater operational efficiency, improved data understanding and lineage, greater data quality, and increased revenue.

Data-driven exemplars, such as Amazon, Airbnb and Uber, have enjoyed these benefits, using them to disrupt and then dominate their respective industries. But you don’t have to be Amazon-sized to achieve them. De-siloing DG and treating it as a strategic initiative is the first step to data-driven success.

Data as Valuable Asset

Data became more valuable than oil in 2017. Yet despite this assessment, many businesses neglect to treat their data as a prized asset. For context, the Industrial Revolution was powered by machinery that had to be well-maintained to function properly, as downtime would result in loss. Such machinery adds value to a business, so it is inherently valuable.

Fast forward to 2018 with data at center stage. Because data is the value driver, the data itself is valuable. Just because it doesn’t have a physical presence doesn’t mean it is any less important than physical assets. So businesses will need to change how they perceive their data, and this is the year in which this thinking is likely to change.

DG-Enabled AI and IoT

Artificial Intelligence (AI) and the Internet of Things (IoT) aren’t new concepts. However, they’re yet to be fully realized with businesses still competing to carve a slice out of these markets.

As the two continue to expand, they will hypercharge the already accelerating volume of data – specifically unstructured data – to almost unfathomable levels. The three Vs of data tend to escalate in unison. As the volume increases, so does the velocity and speed at which data must be processed. The variety of data – mostly unstructured in these cases – also increases, so to manage it, businesses will need to put effective data governance in place.

Alongside strong data governance practices, more and more businesses will turn to NoSQL databases to manage diverse data types.

For more best practices in business and IT alignment, and successfully implementing Data Governance 2.0, click here.

Data governance is everyone's business