Categories
erwin Expert Blog

Six Reasons Business Glossary Management Is Crucial to Data Governance

A business glossary is crucial to any data governance strategy, yet it is often overlooked.

Consider this – no one likes unpleasant surprises, especially in business. So when it comes to objectively understanding what’s happening from the top of the sales funnel to the bottom line of finance, everyone wants – and needs – to trust the data they have.

That’s why you can’t underestimate the importance of a business glossary. Sometimes the business folks say IT or marketing speaks a different language. Or in the case of mergers and acquisitions, different companies call the same thing something else.

A business glossary solves this complexity by creating a common business vocabulary. Regardless of the industry you’re in or the type of data initiative you’re undertaking, the ability for an organization to have a unified, common language is a key component of data governance, ensuring you can trust your data.

Are we speaking the same language?

How can two reports show different results for the same region? A quick analysis of invoices will likely reveal that some of the data fed into the report wasn’t based on a clear understanding of business terms.

Business Glossary Management is Crucial to Data Governance

In such embarrassing scenarios, a business glossary and its ongoing management has obvious significance. And with the complexity of today’s business environment, organizations need the right solution to make sense out of their data and govern it properly.

Here are six reasons a business glossary is vital to data governance:

  1. Bridging the gap between Business & IT

A sound data governance initiative bridges the gap between the business and IT. By understanding the underlying metadata associated with business terms and the associated data lineage, a business glossary helps bridge this gap to deliver greater value to the organization.

  1. Integrated search

The biggest appeal of business glossary management is that it helps establish relationships between business terms to drive data governance across the entire organization. A good business glossary should provide an integrated search feature that can find context-specific results, such as business terms, definitions, technical metadata, KPIs and process areas.

  1. The ability to capture business terms and all associated artifacts

What good is a business term if it can’t be associated with other business terms and KPIs? Capturing relationships between business terms as well as between technical and business entities is essential in today’s regulatory and compliance-conscious environment. A business glossary defines the relationship between the business terms and their underlying metadata for faster analysis and enhanced decision-making.

  1. Integrated project management and workflow

When the business and cross-functional teams operate in silos, users start defining business terms according to their own preferences rather than following standard policies and best practices. To be effective, a business glossary should enable a collaborative workflow management and approval process so stakeholders have visibility with established data governance roles and responsibilities. With this ability, business glossary users can provide input during the entire data definition process prior to publication.

  1. The ability to publish business terms

Successful businesses not only capture business terms and their definitions, they also publish them so that the business-at-large can access it. Business glossary users, who are typically members of the data governance team, should be assigned roles for creating, editing, approving and publishing business glossary content. A workflow feature will show which users are assigned which roles, including those with publishing permissions.

After initial publication, business glossary content can be revised and republished on an ongoing basis, based on the needs of your enterprise.

  1. End-to-end traceability

Capturing business terms and establishing relationships are key to glossary management. However, it is far from a complete solution without traceability. A good business glossary can help generate enterprise-level traceability in the form of mind maps or tabular reports to the business community once relationships have been established.

Business Glossary, the Heart of Data Governance

With a business glossary at the heart of your regulatory compliance and data governance initiatives, you can help break down organizational and technical silos for data visibility, context, control and collaboration across domains. It ensures that you can trust your data.

Plus, you can unify the people, processes and systems that manage and protect data through consistent exchange, understanding and processing to increase quality and trust.

By building a glossary of business terms in taxonomies with synonyms, acronyms and relationships, and publishing approved standards and prioritizing them, you can map data in all its forms to the central catalog of data elements.

That answers the vital question of “where is our data?” Then you can understand who and what is using your data to ensure adherence to usage standards and rules.

Value of Data Intelligence IDC Report

Categories
erwin Expert Blog

Top 10 Reasons to Automate Data Mapping and Data Preparation

Data preparation is notorious for being the most time-consuming area of data management. It’s also expensive.

“Surveys show the vast majority of time is spent on this repetitive task, with some estimates showing it takes up as much as 80% of a data professional’s time,” according to Information Week. And a Trifacta study notes that overreliance on IT resources for data preparation costs organizations billions.

The power of collecting your data can come in a variety of forms, but most often in IT shops around the world, it comes in a spreadsheet, or rather a collection of spreadsheets often numbering in the hundreds or thousands.

Most organizations, especially those competing in the digital economy, don’t have enough time or money for data management using manual processes. And outsourcing is also expensive, with inevitable delays because these vendors are dependent on manual processes too.

Automate Data Mapping

Taking the Time and Pain Out of Data Preparation: 10 Reasons to Automate Data Preparation/Data Mapping

  1. Governance and Infrastructure

Data governance and a strong IT infrastructure are critical in the valuation, creation, storage, use, archival and deletion of data. Beyond the simple ability to know where the data came from and whether or not it can be trusted, there is an element of statutory reporting and compliance that often requires a knowledge of how that same data (known or unknown, governed or not) has changed over time.

A design platform that allows for insights like data lineage, impact analysis, full history capture, and other data management features can provide a central hub from which everything can be learned and discovered about the data – whether a data lake, a data vault, or a traditional warehouse.

  1. Eliminating Human Error

In the traditional data management organization, excel spreadsheets are used to manage the incoming data design, or what is known as the “pre-ETL” mapping documentation – this does not lend to any sort of visibility or auditability. In fact, each unit of work represented in these ‘mapping documents’ becomes an independent variable in the overall system development lifecycle, and therefore nearly impossible to learn from much less standardize.

The key to creating accuracy and integrity in any exercise is to eliminate the opportunity for human error – which does not mean eliminating humans from the process but incorporating the right tools to reduce the likelihood of error as the human beings apply their thought processes to the work.  

  1. Completeness

The ability to scan and import from a broad range of sources and formats, as well as automated change tracking, means that you will always be able to import your data from wherever it lives and track all of the changes to that data over time.

  1. Adaptability

Centralized design, immediate lineage and impact analysis, and change activity logging means that you will always have the answer readily available, or a few clicks away.  Subsets of data can be identified and generated via predefined templates, generic designs generated from standard mapping documents, and pushed via ETL process for faster processing via automation templates.

  1. Accuracy

Out-of-the-box capabilities to map your data from source to report, make reconciliation and validation a snap, with auditability and traceability built-in.  Build a full array of validation rules that can be cross checked with the design mappings in a centralized repository.

  1. Timeliness

The ability to be agile and reactive is important – being good at being reactive doesn’t sound like a quality that deserves a pat on the back, but in the case of regulatory requirements, it is paramount.

  1. Comprehensiveness

Access to all of the underlying metadata, source-to-report design mappings, source and target repositories, you have the power to create reports within your reporting layer that have a traceable origin and can be easily explained to both IT, business, and regulatory stakeholders.

  1. Clarity

The requirements inform the design, the design platform puts those to action, and the reporting structures are fed the right data to create the right information at the right time via nearly any reporting platform, whether mainstream commercial or homegrown.

  1. Frequency

Adaptation is the key to meeting any frequency interval. Centralized designs, automated ETL patterns that feed your database schemas and reporting structures will allow for cyclical changes to be made and implemented in half the time of using conventional means. Getting beyond the spreadsheet, enabling pattern-based ETL, and schema population are ways to ensure you will be ready, whenever the need arises to show an audit trail of the change process and clearly articulate who did what and when through the system development lifecycle.

  1. Business-Friendly

A user interface designed to be business-friendly means there’s no need to be a data integration specialist to review the common practices outlined and “passively enforced” throughout the tool. Once a process is defined, rules implemented, and templates established, there is little opportunity for error or deviation from the overall process. A diverse set of role-based security options means that everyone can collaborate, learn and audit while maintaining the integrity of the underlying process components.

Faster, More Accurate Analysis with Fewer People

What if you could get more accurate data preparation 50% faster and double your analysis with less people?

erwin Mapping Manager (MM) is a patented solution that automates data mapping throughout the enterprise data integration lifecycle, providing data visibility, lineage and governance – freeing up that 80% of a data professional’s time to put that data to work.

With erwin MM, data integration engineers can design and reverse-engineer the movement of data implemented as ETL/ELT operations and stored procedures, building mappings between source and target data assets and designing the transformation logic between them. These designs then can be exported to most ETL and data asset technologies for implementation.

erwin MM is 100% metadata-driven and used to define and drive standards across enterprise integration projects, enable data and process audits, improve data quality, streamline downstream work flows, increase productivity (especially over geographically dispersed teams) and give project teams, IT leadership and management visibility into the ‘real’ status of integration and ETL migration projects.

If an automated data preparation/mapping solution sounds good to you, please check out erwin MM here.

Solving the Enterprise Data Dilemma

Categories
erwin Expert Blog

Defining DG: What Can Data Governance Do for You?

Data governance (DG) is becoming more commonplace because of data-driven business, yet defining DG and putting into sound practice is still difficult for many organizations.

Defining DG

The absence of a standard approach to defining DG could be down to its history of missed expectations, false starts and negative perceptions about it being expensive, intrusive, impeding innovation and not delivering any value. Without success stories to point to, the best way of doing and defining DG wasn’t clear.

On the flip side, the absence of a standard approach to defining DG could be the reason for its history of lacklustre implementation efforts, because those responsible for overseeing it had different ideas about what should be done.

Therefore, it’s been difficult to fully fund a data governance initiative that is underpinned by an effective data management capability. And many organizations don’t distinguish between data governance and data management, using the terms interchangeably and so adding to the confusion.

Defining DG: The Data Governance Conundrum

While research indicates most view data governance as “critically important” or they recognize the value of data, the large percentage without a formal data governance strategy in place indicates there are still significant teething problems.

How Important is Data Governance

And that’s the data governance conundrum. It is essential but unwanted and/or painful.

It is a complex chore, so organizations have lacked the motivation to start and effectively sustain it. But faced with the General Data Protection Regulation (GDPR) and other compliance requirements, they have been doing the bare minimum to avoid the fines and reputational damage.

And arguably, herein lies the problem. Organizations look at data governance as something they have to do rather than seeing what it could do for them.

Data governance has its roots in the structure of business terms and technical metadata, but it has tendrils and deep associations with many other components of a data management strategy and should serve as the foundation of that platform.

With data governance at the heart of data management, data can be discovered and made available throughout the organization for both IT and business stakeholders with approved access. This means enterprise architecture, business process, data modeling and data mapping all can draw from a central metadata repository for a single source of data truth, which improves data quality, trust and use to support organizational objectives.

But this “data nirvana” requires a change in approach to data governance. First, recognizing that Data Governance 1.0 was made for a different time when the volume, variety and velocity of the data an organization had to manage was far lower and when data governance’s reach only extended to cataloging data to support search and discovery. 

Data Governance Evolution

Modern data governance needs to meet the needs of data-driven business. We call this adaptation “Evolving DG.” It is the journey to a cost-effective, mature, repeatable process that permeates the whole organization.

The primary components of Evolving DG are:

  • Evaluate
  • Plan
  • Configure
  • Deliver
  • Feedback

The final step in such an evolution is the implementation of the erwin Enterprise Data Governance Experience (EDGE) platform.

The erwin EDGE places data governance at the heart of the larger data management suite. By unifying the data management suite at a fundamental level, an organization’s data is no longer marred by departmental and software silos. It brings together both IT and the business for data-driven insights, regulatory compliance, agile innovation and business transformation.

It allows every critical piece of the data management and data governance lifecycle to draw from a single source of data truth and ensure quality throughout the data pipeline, helping organizations achieve their strategic objectives including:

  • Operational efficiency
  • Revenue growth
  • Compliance, security and privacy
  • Increased customer satisfaction
  • Improved decision-making

To learn how you can evolve your data governance practice and get an EDGE on your competition, click here.

Solving the Enterprise Data Dilemma

Categories
erwin Expert Blog

The Data Governance (R)Evolution

Data governance continues to evolve – and quickly.

Historically, Data Governance 1.0 was siloed within IT and mainly concerned with cataloging data to support search and discovery. However, it fell short in adding value because it neglected the meaning of data assets and their relationships within the wider data landscape.

Then the push for digital transformation and Big Data created the need for DG to come out of IT’s shadows – Data Governance 2.0 was ushered in with principles designed for  modern, data-driven business. This approach acknowledged the demand for collaborative data governance, the tearing down of organizational silos, and spreading responsibilities across more roles.

But this past year we all witnessed a data governance awakening – or as the Wall Street Journal called it, a “global data governance reckoning.” There was tremendous data drama and resulting trauma – from Facebook to Equifax and from Yahoo to Aetna. The list goes on and on. And then, the European Union’s General Data Protection Regulation (GDPR) took effect, with many organizations scrambling to become compliant.

So where are we today?

Simply put, data governance needs to be a ubiquitous part of your company’s culture. Your stakeholders encompass both IT and business users in collaborative relationships, so that makes data governance everyone’s business.

Data Governance is Everyone's Business

Data governance underpins data privacy, security and compliance. Additionally, most organizations don’t use all the data they’re flooded with to reach deeper conclusions about how to grow revenue, achieve regulatory compliance, or make strategic decisions. They face a data dilemma: not knowing what data they have or where some of it is—plus integrating known data in various formats from numerous systems without a way to automate that process.

To accelerate the transformation of business-critical information into accurate and actionable insights, organizations need an automated, real-time, high-quality data pipeline. Then every stakeholder—data scientist, ETL developer, enterprise architect, business analyst, compliance officer, CDO and CEO—can fuel the desired outcomes based on reliable information.

Connecting Data Governance to Your Organization

  1. Data Mapping & Data Governance

The automated generation of the physical embodiment of data lineage—the creation, movement and transformation of transactional and operational data for harmonization and aggregation—provides the best route for enabling stakeholders to understand their data, trust it as a well-governed asset and use it effectively. Being able to quickly document lineage for a standardized, non-technical environment brings business alignment and agility to the task of building and maintaining analytics platforms.

  1. Data Modeling & Data Governance

Data modeling discovers and harvests data schema, and analyzes, represents and communicates data requirements. It synthesizes and standardizes data sources for clarity and consistency to back up governance requirements to use only controlled data. It benefits from the ability to automatically map integrated and cataloged data to and from models, where they can be stored in a central repository for re-use across the organization.

  1. Business Process Modeling & Data Governance

Business process modeling reveals the workflows, business capabilities and applications that use particular data elements. That requires that these assets be appropriately governed components of an integrated data pipeline that rests on automated data lineage and business glossary creation.

  1. Enterprise Architecture & Data Governance

Data flows and architectural diagrams within enterprise architecture benefit from the ability to automatically assess and document the current data architecture. Automatically providing and continuously maintaining business glossary ontologies and integrated data catalogs inform a key part of the governance process.

The EDGE Revolution

 By bringing together enterprise architecturebusiness processdata mapping and data modeling, erwin’s approach to data governance enables organizations to get a handle on how they handle their data and realize its maximum value. With the broadest set of metadata connectors and automated code generation, data mapping and cataloging tools, the erwin EDGE Platform simplifies the total data management and data governance lifecycle.

This single, integrated solution makes it possible to gather business intelligence, conduct IT audits, ensure regulatory compliance and accomplish any other organizational objective by fueling an automated, high-quality and real-time data pipeline.

The erwin EDGE creates an “enterprise data governance experience” that facilitates collaboration between both IT and the business to discover, understand and unlock the value of data both at rest and in motion.

With the erwin EDGE, data management and data governance are unified and mutually supportive of business stakeholders and IT to:

  • Discover data: Identify and integrate metadata from various data management silos.
  • Harvest data: Automate the collection of metadata from various data management silos and consolidate it into a single source.
  • Structure data: Connect physical metadata to specific business terms and definitions and reusable design standards.
  • Analyze data: Understand how data relates to the business and what attributes it has.
  • Map data flows: Identify where to integrate data and track how it moves and transforms.
  • Govern data: Develop a governance model to manage standards and policies and set best practices.
  • Socialize data: Enable stakeholders to see data in one place and in the context of their roles.

If you’ve enjoyed this latest blog series, then you’ll want to request a copy of Solving the Enterprise Data Dilemma, our new e-book that highlights how to answer the three most important data management and data governance questions: What data do we have? Where is it? And how do we get value from it?

Solving the Enterprise Data Dilemma

Categories
erwin Expert Blog

Compliance First: How to Protect Sensitive Data

The ability to more efficiently govern, discover and protect sensitive data is something that all prospering data-driven organizations are constantly striving for.

It’s been almost four months since the European Union’s General Data Protection Regulation (GDPR) took effect. While no fines have been issued yet, the Information Commissioner’s Office has received upwards of 500 calls per week since the May 25 effective date.

However, the fine-free streak may be ending soon with British Airways (BA) as the first large company to pay a GDPR penalty because of a data breach. The hack at BA in August and early September lasted for more than two weeks, with intruders getting away with account numbers and personal information of customers making reservations on the carrier’s website and mobile app. If regulators conclude that BA failed to take measures to prevent the incident— a significant fine may follow.

Additionally, complaints against Google in the EU have started. For example, internet browser provider Brave claims that Google and other advertising companies expose user data during a process called “bid request.” A data breach occurs because a bid request fails to protect sensitive data against unauthorized access, which is unlawful under the GDPR.

Per Brave’s announcement, bid request data can include the following personal data:

  • What you are reading or watching
  • Your location
  • Description of your device
  • Unique tracking IDs or a “cookie match,” which allows advertising technology companies to try to identify you the next time you are seen, so that a long-term profile can be built or consolidated with offline data about you
  • Your IP address,depending on the version of “real-time bidding” system
  • Data broker segment ID, if available, which could denote things like your income bracket, age and gender, habits, social media influence, ethnicity, sexual orientation, religion, political leaning, etc., depending on the version of bidding system

Obviously, GDPR isn’t the only regulation that organizations need to comply with. From HIPAA in healthcare to FINRA, PII and BCBS in financial services to the upcoming California Consumer Privacy Act (CCPA) taking effect January 1, 2020, regulatory compliance is part of running – and staying in business.

The common denominator in compliance across all industry sectors is the ability to protect sensitive data. But if organizations are struggling to understand what data they have and where it’s located, how do they protect it? Where do they begin?

Protect sensitive data

Discover and Protect Sensitive Data

Data is a critical asset used to operate, manage and grow a business. While sometimes at rest in databases, data lakes and data warehouses; a large percentage is federated and integrated across the enterprise, introducing governance, manageability and risk issues that must be managed.

Knowing where sensitive data is located and properly governing it with policy rules, impact analysis and lineage views is critical for risk management, data audits and regulatory compliance.

However, when key data isn’t discovered, harvested, cataloged, defined and standardized as part of integration processes, audits may be flawed and therefore putting your organization at risk.

Sensitive data – at rest or in motion – that exists in various forms across multiple systems must be automatically tagged, its lineage automatically documented, and its flows depicted so that it is easily found and its usage across workflows easily traced.

Thankfully, tools are available to help automate the scanning, detection and tagging of sensitive data by:

  • Monitoring and controlling sensitive data: Better visibility and control across the enterprise to identify data security threats and reduce associated risks
  • Enriching business data elements for sensitive data discovery: Comprehensive mechanism to define business data element for PII, PHI and PCI across database systems, cloud and Big Data stores to easily identify sensitive data based on a set of algorithms and data patterns
  • Providing metadata and value-based analysis: Discovery and classification of sensitive data based on metadata and data value patterns and algorithms. Organizations can define business data elements and rules to identify and locate sensitive data including PII, PHI, PCI and other sensitive information.


A Regulatory Rationale for Integrating Data Management and Data Governance

Data management and data governance, together, play a vital role in compliance. It’s easier to protect sensitive data when you know where it’s stored, what it is, and how it needs to be governed.

Truly understanding an organization’s data, including the data’s value and quality, requires a harmonized approach embedded in business processes and enterprise architecture. Such an integrated enterprise data governance experience helps organizations understand what data they have, where it is, where it came from, its value, its quality and how it’s used and accessed by people and applications.

But how is all this possible? Again, it comes back to the right technology for IT and business collaboration that will enable you to:

  • Discover data: Identify and interrogate metadata from various data management silos
  • Harvest data: Automate the collection of metadata from various data management silos and consolidate it into a single source
  • Structure data: Connect physical metadata to specific business terms and definitions and reusable design standards
  • Analyze data: Understand how data relates to the business and what attributes it has
  • Map data flows: Identify where to integrate data and track how it moves and transforms
  • Govern data: Develop a governance model to manage standards and policies and set best practices
  • Socialize data: Enable all stakeholders to see data in one place in their own context
Categories
erwin Expert Blog

Automated Data Management: Stop Drowning in Your Data 

Due to the wealth of data data-driven organizations are tasked with handling, organizations are increasingly adopting automated data management.

There are 2.5 quintillion bytes of data being created every day, and that figure is increasing in tandem with the production of and demand for Internet of Things (IoT) devices. However, Forrester reports that between 60 and 73 percent of all data within an enterprise goes unused.

Collecting all that data is pointless if it’s not going to be used to deliver accurate and actionable insights.

But the reality is there’s not enough time, people and/or money for effective data management using manual processes. Organizations won’t be able to take advantage of analytics tools to become data-driven unless they establish a foundation for agile and complete data management. And organizations that don’t employ automated data management risk being left behind.

In addition to taking the burden off already stretched internal teams, automated data management’s most obvious benefit is that it’s a key enabler of data-driven business. Without it, a truly data-driven approach to business is either ineffective, or impossible, depending on the scale of data you’re working with.

This is because there’s either too much data left unaccounted for and too much potential revenue left on the table for the strategy to be considered effective. Or it’s because there’s so much disparity in the data sources and silos in where data is stored that data quality suffers to an insurmountable degree, rendering any analysis fundamentally flawed.

But simply enabling the strategy isn’t the most compelling use case, or organizations across the board would have implemented it already.

The Case for Automated Data Management

Business leaders and decision-makers want a business case for automated data management.

So here it is …

Without automation, business transformation will be stymied. Companies, especially large ones with thousands of systems, files and processes, will be particularly challenged by taking a manual approach. And outsourcing these data management efforts to professional services firms only delays schedules and increases cost.

By automating data cataloging and data mapping inclusive of data at rest and data in motion through the integration lifecycle process, organizations will benefit from:

  • A metadata-driven automated framework for cataloging data assets and their flows across the business
  • An efficient, agile and dynamic way to generate data lineage from operational systems (databases, data models, file-based systems, unstructured files and more) across the information management architecture
  • Easy access to what data aligns with specific business rules and policies
  • The ability to inform how data is transformed, integrated and federated throughout business processes – complete with full documentation
  • Faster project delivery and lower costs because data is managed internally, without the need to outsource data management efforts
  • Assurance of data quality, so analysis is reliable and new initiatives aren’t beleaguered with false starts
  • A seamlessly governed data pipeline, operationalized to the benefit of all stakeholders

erwin Data Intelligence

Categories
erwin Expert Blog

Healthy Co-Dependency: Data Management and Data Governance

Data management and data governance are now more important than ever before. The hyper competitive nature of data-driven business means organizations need to get more out of their data than ever before – and fast.

A few data-driven exemplars have led the way, turning data into actionable insights that influence everything from corporate structure to new products and pricing. “Few” being the operative word.

It’s true, data-driven business is big business. Huge actually. But it’s dominated by a handful of organizations that realized early on what a powerful and disruptive force data can be.

The benefits of such data-driven strategies speak for themselves: Netflix has replaced Blockbuster, and Uber continues to shake up the taxi business. Organizations indiscriminate of industry are following suit, fighting to become the next big, disruptive players.

But in many cases, these attempts have failed or are on the verge of doing so.

Now with the General Data Protection Regulation (GDPR) in effect, data that is unaccounted for is a potential data disaster waiting to happen.

So organizations need to understand that getting more out of their data isn’t necessarily about collecting more data. It’s about unlocking the value of the data they already have.

Data Management and Data Governance Co-Dependency

The Enterprise Data Dilemma

However, most organizations don’t know exactly what data they have or even where some of it is. And some of the data they can account for is going to waste because they don’t have the means to process it. This is especially true of unstructured data types, which organizations are collecting more frequently.

Considering that 73 percent of company data goes unused, it’s safe to assume your organization is dealing with some if not all of these issues.

Big picture, this means your enterprise is missing out on thousands, perhaps millions in revenue.

The smaller picture? You’re struggling to establish a single source of data truth, which contributes to a host of problems:

  • Inaccurate analysis and discrepancies in departmental reporting
  • Inability to manage the amount and variety of data your organization collects
  • Duplications and redundancies in processes
  • Issues determining data ownership, lineage and access
  • Achieving and sustaining compliance

To avoid such circumstances and get more value out of data, organizations need to harmonize their approach to data management and data governance, using a platform of established tools that work in tandem while also enabling collaboration across the enterprise.

Data management drives the design, deployment and operation of systems that deliver operational data assets for analytics purposes.

Data governance delivers these data assets within a business context, tracking their physical existence and lineage, and maximizing their security, quality and value.

Although these two disciplines approach data from different perspectives (IT-driven and business-oriented), they depend on each other. And this co-dependency helps an organization make the most of its data.

The P-M-G Hub

Together, data management and data governance form a critical hub for data preparation, modeling and data governance. How?

It starts with a real-time, accurate picture of the data landscape, including “data at rest” in databases, data warehouses and data lakes and “data in motion” as it is integrated with and used by key applications. That landscape also must be controlled to facilitate collaboration and limit risk.

But knowing what data you have and where it lives is complicated, so you need to create and sustain an enterprise-wide view of and easy access to underlying metadata. That’s a tall order with numerous data types and data sources that were never designed to work together and data infrastructures that have been cobbled together over time with disparate technologies, poor documentation and little thought for downstream integration. So the applications and initiatives that depend on a solid data infrastructure may be compromised, and data analysis based on faulty insights.

However, these issues can be addressed with a strong data management strategy and technology to enable the data quality required by the business, which encompasses data cataloging (integration of data sets from various sources), mapping, versioning, business rules and glossaries maintenance and metadata management (associations and lineage).

Being able to pinpoint what data exists and where must be accompanied by an agreed-upon business understanding of what it all means in common terms that are adopted across the enterprise. Having that consistency is the only way to assure that insights generated by analyses are useful and actionable, regardless of business department or user exploring a question. Additionally, policies, processes and tools that define and control access to data by roles and across workflows are critical for security purposes.

These issues can be addressed with a comprehensive data governance strategy and technology to determine master data sets, discover the impact of potential glossary changes across the enterprise, audit and score adherence to rules, discover risks, and appropriately and cost-effectively apply security to data flows, as well as publish data to people/roles in ways that are meaningful to them.

Data Management and Data Governance: Play Together, Stay Together

When data management and data governance work in concert empowered by the right technology, they inform, guide and optimize each other. The result for an organization that takes such a harmonized approach is automated, real-time, high-quality data pipeline.

Then all stakeholders — data scientists, data stewards, ETL developers, enterprise architects, business analysts, compliance officers, CDOs and CEOs – can access the data they’re authorized to use and base strategic decisions on what is now a full inventory of reliable information.

The erwin EDGE creates an “enterprise data governance experience” through integrated data mapping, business process modeling, enterprise architecture modeling, data modeling and data governance. No other software platform on the market touches every aspect of the data management and data governance lifecycle to automate and accelerate the speed to actionable business insights.

Categories
erwin Expert Blog

Solving the Enterprise Data Dilemma

Due to the adoption of data-driven business, organizations across the board are facing their own enterprise data dilemmas.

This week erwin announced its acquisition of metadata management and data governance provider AnalytiX DS. The combined company touches every piece of the data management and governance lifecycle, enabling enterprises to fuel automated, high-quality data pipelines for faster speed to accurate, actionable insights.

Why Is This a Big Deal?

From digital transformation to AI, and everything in between, organizations are flooded with data. So, companies are investing heavily in initiatives to use all the data at their disposal, but they face some challenges. Chiefly, deriving meaningful insights from their data – and turning them into actions that improve the bottom line.

This enterprise data dilemma stems from three important but difficult questions to answer: What data do we have? Where is it? And how do we get value from it?

Large enterprises use thousands of unharvested, undocumented databases, applications, ETL processes and procedural code that make it difficult to gather business intelligence, conduct IT audits, and ensure regulatory compliance – not to mention accomplish other objectives around customer satisfaction, revenue growth and overall efficiency and decision-making.

The lack of visibility and control around “data at rest” combined with “data in motion”, as well as difficulties with legacy architectures, means these organizations spend more time finding the data they need rather than using it to produce meaningful business outcomes.

To remedy this, enterprises need smarter and faster data management and data governance capabilities, including the ability to efficiently catalog and document their systems, processes and the associated data without errors. In addition, business and IT must collaborate outside their traditional operational silos.

But this coveted state of data nirvana isn’t possible without the right approach and technology platform.

Enterprise Data: Making the Data Management-Data Governance Love Connection

Enterprise Data: Making the Data Management-Data Governance Love Connection

Bringing together data management and data governance delivers greater efficiencies to technical users and better analytics to business users. It’s like two sides of the same coin:

  • Data management drives the design, deployment and operation of systems that deliver operational and analytical data assets.
  • Data governance delivers these data assets within a business context, tracks their physical existence and lineage, and maximizes their security, quality and value.

Although these disciplines approach data from different perspectives and are used to produce different outcomes, they have a lot in common. Both require a real-time, accurate picture of an organization’s data landscape, including data at rest in data warehouses and data lakes and data in motion as it is integrated with and used by key applications.

However, creating and maintaining this metadata landscape is challenging because this data in its various forms and from numerous sources was never designed to work in concert. Data infrastructures have been cobbled together over time with disparate technologies, poor documentation and little thought for downstream integration, so the applications and initiatives that depend on data infrastructure are often out-of-date and inaccurate, rendering faulty insights and analyses.

Organizations need to know what data they have and where it’s located, where it came from and how it got there, what it means in common business terms [or standardized business terms] and be able to transform it into useful information they can act on – all while controlling its access.

To support the total enterprise data management and governance lifecycle, they need an automated, real-time, high-quality data pipeline. Then every stakeholder – data scientist, ETL developer, enterprise architect, business analyst, compliance officer, CDO and CEO – can fuel the desired outcomes with reliable information on which to base strategic decisions.

Enterprise Data: Creating Your “EDGE”

At the end of the day, all industries are in the data business and all employees are data people. The success of an organization is not measured by how much data it has, but by how well it’s used.

Data governance enables organizations to use their data to fuel compliance, innovation and transformation initiatives with greater agility, efficiency and cost-effectiveness.

Organizations need to understand their data from different perspectives, identify how it flows through and impacts the business, aligns this business view with a technical view of the data management infrastructure, and synchronizes efforts across both disciplines for accuracy, agility and efficiency in building a data capability that impacts the business in a meaningful and sustainable fashion.

The persona-based erwin EDGE creates an “enterprise data governance experience” that facilitates collaboration between both IT and the business to discover, understand and unlock the value of data both at rest and in motion.

By bringing together enterprise architecture, business process, data mapping and data modeling, erwin’s approach to data governance enables organizations to get a handle on how they handle their data. With the broadest set of metadata connectors and automated code generation, data mapping and cataloging tools, the erwin EDGE Platform simplifies the total data management and data governance lifecycle.

This single, integrated solution makes it possible to gather business intelligence, conduct IT audits, ensure regulatory compliance and accomplish any other organizational objective by fueling an automated, high-quality and real-time data pipeline.

With the erwin EDGE, data management and data governance are unified and mutually supportive, with one hand aware and informed by the efforts of the other to:

  • Discover data: Identify and integrate metadata from various data management silos.
  • Harvest data: Automate the collection of metadata from various data management silos and consolidate it into a single source.
  • Structure data: Connect physical metadata to specific business terms and definitions and reusable design standards.
  • Analyze data: Understand how data relates to the business and what attributes it has.
  • Map data flows: Identify where to integrate data and track how it moves and transforms.
  • Govern data: Develop a governance model to manage standards and policies and set best practices.
  • Socialize data: Enable stakeholders to see data in one place and in the context of their roles.

An integrated solution with data preparation, modeling and governance helps businesses reach data governance maturity – which equals a role-based, collaborative data governance system that serves both IT and business users equally. Such maturity may not happen overnight, but it will ultimately deliver the accurate and actionable insights your organization needs to compete and win.

Your journey to data nirvana begins with a demo of the enhanced erwin Data Governance solution. Register now.

erwin ADS webinar

Categories
erwin Expert Blog

Once You Understand Your Data, Everything Is Easier

As a data-driven organization in the modern, hyper-competetive business landscape, it’s imperative that employees, business leaders and decision makers can understand your data.

In a previous article, I argued that business process management without data governance is a perilous experiment. The same can be said for enterprise architecture initiatives that traditionally stop at the process level with disregard for the data element.

Therefore, an organization that ignores the data layer of both its process and enterprise architectures isn’t tapping into their full potential. You run the risk of being siloed, confined to traditional and qualitative structures that will make improvement and automation more difficult, time-consuming and ultimately ineffective. However, it does not have to be this way.

I’m going to make a bold statement, and then we can explore it together. Ready? Without data governance, a process management or enterprise architecture initiative will result in a limited enterprise architecture and any efforts that may stem from it (process improvement, consolidation, automation, etc.) also will be limited.

So how exactly does data governance fit within the larger world of enterprise architecture, and why is it so critical?

Understand Your Data – What Lies Beneath

A constant source of unpleasant surprise for most medium and large-scale enterprise architecture and process management initiatives is discovering just how tricky it is to establish interconnectivity between low-level processes and procedures in a way that is easy sustainable and above all, objective.

Traditionally, most projects focus on some type of top-down classification, using either organizational or capability-based groupings. These structures are usually qualitative or derived from process owners, subject matter experts (SMEs) or even department heads and business analysts. While usually accurate, they are primarily isolated, top-down views contained within organizational silos.

But more and more enterprise architecture initiatives are attempting to move beyond these types of groupings to create horizontal, interconnected processes. To do so, process owners must rely on handover points – inputs and outputs, documents and, you guessed it, data. The issue is that these handover points are still qualitative and unsustainable in the long term, which is where data and data governance comes in.

By providing an automated, fully integrated view of data ownership, lineage and interconnectivity, data governance serves as the missing link between disparate and disconnected processes in a way that has always proved elusive and time consuming. It is an objective link, driven by factual relationships that brings everything together.

Data governance also provides an unparalleled level of process connectivity, so organizations can see how processes truly interact with each other, across any type of organizational silo, enabling realistic and objective impact analysis. How is this possible? By conducting data governance in conjunction with any enterprise architecture initiative, using both a clear methodology and specialized system.

Understand Your Data – Data Is Everywhere

Everyone knows that processes generate, use and own data. The problem is understanding what “process data” is and how to incorporate that information into standard business process management.

Most process owners, SMEs and business analysts view data as a collection of information, usually in terms of documents and data groups such as “customer information” or “request details,” that is generated and completed through a series of processes or process steps. Links between documents/data groups and processes are assumed to be communicated to other processes that use them and so on. But this picture is not accurate.

Most of the time, a document or data group is not processed in its entirety by any subsequent/recipient processes; some information is processed by one process while the remainder is reserved for another or is entirely useless. This means that only single, one-dimensional connections are made, ignoring derived or more complex connections.

Therefore, any attempted impact analysis would ignore additional dimensions, which account for most of the process improvement and re-engineering projects that either fail or present significant overruns in terms of both time and budget.

With data governance, data is identified and tracked with ownership, lineage and use established and associated with the appropriate process elements, showing the connections between processes at the most practical informational level.

In addition and possibly most important, process ownership/responsibility becomes more objective and clear because it can be determined according to who owns/is responsible for the information the process generates and uses – as opposed to the more arbitrary/qualitative assignment that tends to be the norm. RACI and CRUD matrix analyses become faster, more efficient and infinitely more effective, and for the first time, they encompass elements of derived ownership (through data lineage).

Process automation projects also become more efficient, effective and shorter in duration because the right data is known from the beginning, process interconnectivity is mapped objectively, and responsibilities are clearly visible from the initial design phase.

With requirements accompanied by realistic process mapping information, development of workflows is easier, faster and less prone to errors, making process automation more attractive and feasible, even to smaller organizations for which even the scoping and requirements-gathering exercise has traditionally proved too complicated.

Understand Your Data – More Upside to Data Governance

Data governance enables an organization to manage and mitigate data risks, protecting itself from legal and reputational challenges to ensure continued operation. And once data is connected with business processes through effective, proactive data governance, additional benefits are realized:

  • Process risk management and mitigation becomes more factual and less qualitative, making the organization more effective;
  • Process compliance also becomes more factual, empowering not only compliance efforts but also compliance control and assessment with easier impact analyses; and
  • Organizational redesign can be based on what groupings actually do.

While the above benefits may appear vague and far-removed from either a pure enterprise architecture or data governance initiative, they are more tangible and achievable than ever before as organizations begin to rely more on object-oriented management systems.

Combining the strategic, informational-level detail and management provided by data governance with the more functional, organizational view of enterprise architecture proves that one plus one really does equal more than two.

To learn more about how data governance underpins organization’s data strategies click here.

Categories
erwin Expert Blog

Big Data Posing Challenges? Data Governance Offers Solutions

Big Data is causing complexity for many organizations, not just because of the volume of data they’re collecting, but because of the variety of data they’re collecting.

Big Data often consists of unstructured data that streams into businesses from social media networks, internet-connected sensors, and more. But the data operations at many organizations were not designed to handle this flood of unstructured data.

Dealing with the volume, velocity and variety of Big Data is causing many organizations to re-think how they store and govern their data. A perfect example is the data warehouse. The people who built and manage the data warehouse at your organization built something that made sense to them at the time. They understood what data was stored where and why, as well how it was used by business units and applications.

The era of Big Data introduced inexpensive data lakes to some organizations’ data operations, but as vast amounts of data pour into these lakes, many IT departments found themselves managing a data swamp instead.

In a perfect world, your organization would treat Big Data like any other type of data. But, alas, the world is not perfect. In reality, practicality and human nature intervene. Many new technologies, when first adopted, are separated from the rest of the infrastructure.

“New technologies are often looked at in a vacuum, and then built in a silo,” says Danny Sandwell, director of product marketing for erwin, Inc.

That leaves many organizations with parallel collections of data: one for so-called “traditional” data and one for the Big Data.

There are a few problems with this outcome. For one, silos in IT have a long history of keeping organizations from understanding what they have, where it is, why they need it, and whether it’s of any value. They also have a tendency to increase costs because they don’t share common IT resources, leading to redundant infrastructure and complexity. Finally, silos usually mean increased risk.

But there’s another reason why parallel operations for Big Data and traditional data don’t make much sense: The users simply don’t care.

At the end of the day, your users want access to the data they need to do their jobs, and whether IT considers it Big Data, little data, or medium-sized data isn’t important. What’s most important is that the data is the right data – meaning it’s accurate, relevant and can be used to support or oppose a decision.

Reputation Management - What's Driving Data Governance

How Data Governance Turns Big Data into Just Plain Data

According to a November 2017 survey by erwin and UBM, 21 percent of respondents cited Big Data as a driver of their data governance initiatives.

In today’s data-driven world, data governance can help your business understand what data it has, how good it is, where it is, and how it’s used. The erwin/UBM survey found that 52 percent of respondents said data is critically important to their organization and they have a formal data governance strategy in place. But almost as many respondents (46 percent) said they recognize the value of data to their organization but don’t have a formal governance strategy.

A holistic approach to data governance includes thesekey components.

  • An enterprise architecture component is important because it aligns IT and the business, mapping a company’s applications and the associated technologies and data to the business functions they enable. By integrating data governance with enterprise architecture, businesses can define application capabilities and interdependencies within the context of their connection to enterprise strategy to prioritize technology investments so they align with business goals and strategies to produce the desired outcomes.
  • A business process and analysis component defines how the business operates and ensures employees understand and are accountable for carrying out the processes for which they are responsible. Enterprises can clearly define, map and analyze workflows and build models to drive process improvements, as well as identify business practices susceptible to the greatest security, compliance or other risks and where controls are most needed to mitigate exposures.
  • A data modeling component is the best way to design and deploy new databases with high-quality data sources and support application development. Being able to cost-effectively and efficiently discover, visualize and analyze “any data” from “anywhere” underpins large-scale data integration, master data management, Big Data and business intelligence/analytics with the ability to synthesize, standardize and store data sources from a single design, as well as reuse artifacts across projects.

When data governance is done right, and it’s woven into the structure and architecture of your business, it helps your organization accept new technologies and the new sources of data they provide as they come along. This makes it easier to see ROI and ROO from your Big Data initiatives by managing Big Data in the same manner your organization treats all of its data – by understanding its metadata, defining its relationships, and defining its quality.

Furthermore, businesses that apply sound data governance will find themselves with a template or roadmap they can use to integrate Big Data throughout their organizations.

If your business isn’t capitalizing on the Big Data it’s collecting, then it’s throwing away dollars spent on data collection, storage and analysis. Just as bad, however, is a situation where all of that data and analysis is leading to the wrong decisions and poor business outcomes because the data isn’t properly governed.

Previous posts:

You can determine how effective your current data governance initiative is by taking erwin’s DG RediChek.