Categories
erwin Expert Blog

Healthcare Data Governance: What’s the Prognosis?

Healthcare data governance has far more applications than just meeting compliance standards. Healthcare costs are always a topic of discussion, as is the state of health insurance and policies like the Affordable Care Act (ACA).

Costs and policy are among a number of significant trends called out in the executive summary of the Stanford Medicine 2017 Health Trend Report. But the summary also included a common thread that connects them all:

“Behind these trends is one fundamental force driving health care transformation: the power of data.”

Indeed, data is essential to healthcare in areas like:

  • Medical research – Collecting and reviewing increasingly large data sets has the potential to introduce new levels of speed and efficiency into what has been an often slow and laborious process.
  • Preventative care – Wearable devices help consumers track exercise, diet, weight and nutrition, as well as clinical applications like genetic sequencing.
  • The patient experience – Healthcare is not immune to issues of customer service and the need to provide timely, accurate responses to questions or complaints.
  • Disease and outbreak prevention – Data and analysis can help spot patterns, so clinicians get ahead of big problems before they become epidemics.

Data Management and Data Governance

Data Vulnerabilities in Healthcare

Data is valuable to the healthcare industry. But it also carries risks because of the volume and velocity with which it is collected and stored. Foremost among these are regulatory compliance and security.

Because healthcare data is so sensitive, the ways in which it is secured and shared are watched closely by regulators. HIPAA (Health Information Portability and Accountability Act) is probably the most recognized regulation governing data in healthcare, but it is not the only one.

In addition to privacy and security policies, other challenges that prevent the healthcare industry from maximizing the ways it puts data to work include:

  • High costs, which are further exacerbated by expected lower commercial health insurance payouts and higher payouts from low-margin services like Medicare, as well as rising labor costs. Data and analytics can potentially help hospitals better plan for these challenges, but thin margins might prevent the investments necessary in this area.
  • Electronic medical records, which the Stanford report cited as a cause of frustration that negatively impacts relationships between patients and healthcare providers.
  • Silos of data, which often are caused by mergers and acquisitions within the industry, but that are also emblematic of the number of platforms and applications used by providers, insurers and other players in the healthcare market.

Early 2018 saw a number of mergers and acquisitions in the healthcare industry, including hospital systems in New England, as well as in the Philadelphia area of the United States. The $69 billion dollar merger of Aetna and CVS also was approved by shareholders in early 2018, making it one of the most significant deals of the past decade.

Each merger and acquisition requires careful and difficult decisions concerning the application portfolio and data of each organization. Redundancies need to identified, as do gaps, so the patient experience and care continues without serious disruption.

Truly understanding healthcare data requires a holistic approach to data governance that is embedded in business processes and enterprise architecture. When implemented properly, data governance initiatives help healthcare organizations understand what data they have, where it is, where it came from, its value, its quality and how it’s used and accessed by people and applications.

Healthcare Data Governance

Improving Healthcare Analytics and Patient Care with Healthcare Data Governance

Data governance plays a vital role in compliance because data is easier to protect when you know where it is stored, what it is, and how it needs to be governed. According to a 2017 survey by erwin, Inc. and UBM, 60 percent of organizations said compliance was driving their data governance initiatives.

With a solid understand of their data and the ways it is collected and consumed throughout their organizations, healthcare players are better positioned to reap the benefits of analytics. As Deloitte pointed out in a perspectives piece about healthcare analytics, the shift to value-based care makes analytics within the industry more essential than ever.

With increasing pressure on margins, the combination of data governance and analytics is critical to creating value and finding efficiencies. Investments in analytics are only as valuable as the data they are fed, however.

Poor decisions based on poor data will lead to bad outcomes, but they also diminish trust in the analytics platform, which will ruin the ROI as it is used less and less.

Most important, healthcare data governance plays a critical role in helping improve patient outcomes and value. In healthcare, the ability to make timely, accurate decisions based on quality data can be a matter of life or death.

In areas like preventative care and the patient experience, good data can mean better advice to patients, more accurate programs for follow-up care, and the ability to meet their medical and lifestyle needs within a healthcare facility or beyond.

As healthcare organizations look to improve efficiencies, lower costs and provide quality, value-based care, healthcare data governance will be essential to better outcomes for patients, providers and the industry at large.

For more information, please download our latest whitepaper, The Regulatory Rationale for Integrating Data Management and Data Governance.

If you’re interested in healthcare data governance, or evaluating new data governance technologies for another industry, you can schedule a demo of erwin’s data mapping and data governance solutions.

Data Mapping Demo CTA

Michael Pastore is the Director, Content Services at QuinStreet B2B Tech.

Categories
erwin Expert Blog

Financial Services Data Governance: Helping Value ‘the New Currency’

For organizations operating in financial services data governance is becoming increasingly more important. When financial services industry board members and executives gathered for EY’s Financial Services Leadership Summit in early 2018, data was a major topic of conversation.

Attendees referred to data as “the new oil” and “the new currency,” and with good reason. Financial services organizations, including banks, brokerages, insurance companies, asset management firms and more, collect and store massive amounts of data.

But data is only part of the bigger picture in financial services today. Many institutions are investing heavily in IT to help transform their businesses to serve customers and partners who are quickly adopting new technologies. For example, Gartner research expects the global banking industry will spend $519 billion on IT in 2018.

The combination of more data and technology and fewer in-person experiences puts a premium on trust and customer loyalty. Trust has long been at the heart of the financial services industry. It’s why bank buildings in a bygone era were often erected as imposing stone structures that signified strength at a time before deposit insurance, when poor management or even a bank robbery could have devastating effects on a local economy.

Trust is still vital to the health of financial institutions, except today’s worst-case scenario often involves faceless hackers pillaging sensitive data to use or re-sell on the dark web. That’s why governing all of the industry’s data, and managing the risks that comes with collecting and storing such vast amounts of information, is increasingly a board-level issue.

The boards of modern financial services institutions understand three important aspects of data:

  1. Data has a tremendous amount of value to the institution in terms of helping identify the wants and needs of customers.
  2. Data is central to security and compliance, and there are potentially severe consequences for organizations that run afoul of either.
  3. Data is central to the transformation underway at many financial institutions as they work to meet the needs of the modern customer and improve their own efficiencies.

Data Management and Data Governance: Solving the Enterprise Data Dilemma

Data governance helps organizations in financial services understand their data. It’s essential to protecting that data and to helping comply with the many government and industry regulations in the industry. But financial services data governance – all data governance in fact – is about more than security and compliance; it’s about understanding the value and quality of data.

When done right and deployed in a holistic manner that’s woven into the business processes and enterprise architecture, data governance helps financial services organizations better understand where their data is, where it came from, its value, its quality, and how the data is accessed and used by people and applications.

Financial Services Data Governance: It’s Complicated

Financial services data governance is getting increasingly complicated for a number of reasons.

Mergers & Acquisitions

Deloitte’s 2018 Banking and Securities M&A Outlook described 2017 as “stuck in neutral,” but there is reason to believe the market picks up steam in 2018 and beyond, especially when it comes to financial technology (or fintech) firms. Bringing in new sets of data, new applications and new processes through mergers and acquisitions creates a great deal of complexity.

The integrations can be difficult, and there is an increased likelihood of data sprawl and data silos. Data governance not only helps organizations better understand the data, but it also helps make sense of the application portfolios of merging institutions to discover gaps and redundancies.

Regulatory Environment

There is a lengthy list of regulations and governing bodies that oversee the financial services industry, covering everything from cybersecurity to fraud protection to payment processing, all in an effort to minimize risk and protect customers.

The holistic view of data that results from a strong data governance initiative is becoming essential to regulatory compliance. According to a 2017 survey by erwin, Inc. and UBM, 60 percent of organizations said compliance drives their data governance initiatives.

More Partnerships and Networks

According to research by IBM, 45 percent of bankers say partnerships and alliances help improve their agility and competitiveness. Like consumers, today’s financial institutions are more connected than ever before, and it’s no longer couriers and cash that are being transferred in these partnerships; it’s data.

Understanding the value, quality and risk of the data shared in these alliances is essential – not only to be a good partner and derive a business benefit from the relationship, but also to evaluate whether or not an alliance or partnership makes good business sense.

Financial Services Data Governance

More Sources of Data, More Touch Points

Financial services institutions are at the forefront of the multi-channel customer experience and have been for years. People do business with institutions by phone, in person, via the Web, and using mobile devices.

All of these touch points generate data, and it is essential that organizations can tie them all together to understand their customers. This information is not only important to customer service, but also to finding opportunities to grow relationships with customers by identifying where it makes sense to upsell and cross-sell products and services.

Grow the Business, Manage the Risk

In the end, financial services organizations need to understand the ways their data can help grow the business and manage risk. Data governance plays an important role in both.

Financial services data governance can better enable:

  • The personalized, self-service, applications customers want
  • The machine learning solutions that automate decision-making and create more efficient business processes
  • Faster and more accurate identification of cross-sell and upsell opportunities
  • Better decision-making about the application portfolio, M&A targets, M&A success and more

If you’re interested in financial services data governance, or evaluating new data governance technologies for another industry, you can schedule a demo of erwin’s data mapping and data governance solutions.

Data Mapping Demo CTA

And you also might want to download our latest e-book, Solving the Enterprise Data Dilemma.

Michael Pastore is the Director, Content Services at QuinStreet B2B Tech.

Categories
erwin Expert Blog

Big Data Posing Challenges? Data Governance Offers Solutions

Big Data is causing complexity for many organizations, not just because of the volume of data they’re collecting, but because of the variety of data they’re collecting.

Big Data often consists of unstructured data that streams into businesses from social media networks, internet-connected sensors, and more. But the data operations at many organizations were not designed to handle this flood of unstructured data.

Dealing with the volume, velocity and variety of Big Data is causing many organizations to re-think how they store and govern their data. A perfect example is the data warehouse. The people who built and manage the data warehouse at your organization built something that made sense to them at the time. They understood what data was stored where and why, as well how it was used by business units and applications.

The era of Big Data introduced inexpensive data lakes to some organizations’ data operations, but as vast amounts of data pour into these lakes, many IT departments found themselves managing a data swamp instead.

In a perfect world, your organization would treat Big Data like any other type of data. But, alas, the world is not perfect. In reality, practicality and human nature intervene. Many new technologies, when first adopted, are separated from the rest of the infrastructure.

“New technologies are often looked at in a vacuum, and then built in a silo,” says Danny Sandwell, director of product marketing for erwin, Inc.

That leaves many organizations with parallel collections of data: one for so-called “traditional” data and one for the Big Data.

There are a few problems with this outcome. For one, silos in IT have a long history of keeping organizations from understanding what they have, where it is, why they need it, and whether it’s of any value. They also have a tendency to increase costs because they don’t share common IT resources, leading to redundant infrastructure and complexity. Finally, silos usually mean increased risk.

But there’s another reason why parallel operations for Big Data and traditional data don’t make much sense: The users simply don’t care.

At the end of the day, your users want access to the data they need to do their jobs, and whether IT considers it Big Data, little data, or medium-sized data isn’t important. What’s most important is that the data is the right data – meaning it’s accurate, relevant and can be used to support or oppose a decision.

Reputation Management - What's Driving Data Governance

How Data Governance Turns Big Data into Just Plain Data

According to a November 2017 survey by erwin and UBM, 21 percent of respondents cited Big Data as a driver of their data governance initiatives.

In today’s data-driven world, data governance can help your business understand what data it has, how good it is, where it is, and how it’s used. The erwin/UBM survey found that 52 percent of respondents said data is critically important to their organization and they have a formal data governance strategy in place. But almost as many respondents (46 percent) said they recognize the value of data to their organization but don’t have a formal governance strategy.

A holistic approach to data governance includes thesekey components.

  • An enterprise architecture component is important because it aligns IT and the business, mapping a company’s applications and the associated technologies and data to the business functions they enable. By integrating data governance with enterprise architecture, businesses can define application capabilities and interdependencies within the context of their connection to enterprise strategy to prioritize technology investments so they align with business goals and strategies to produce the desired outcomes.
  • A business process and analysis component defines how the business operates and ensures employees understand and are accountable for carrying out the processes for which they are responsible. Enterprises can clearly define, map and analyze workflows and build models to drive process improvements, as well as identify business practices susceptible to the greatest security, compliance or other risks and where controls are most needed to mitigate exposures.
  • A data modeling component is the best way to design and deploy new databases with high-quality data sources and support application development. Being able to cost-effectively and efficiently discover, visualize and analyze “any data” from “anywhere” underpins large-scale data integration, master data management, Big Data and business intelligence/analytics with the ability to synthesize, standardize and store data sources from a single design, as well as reuse artifacts across projects.

When data governance is done right, and it’s woven into the structure and architecture of your business, it helps your organization accept new technologies and the new sources of data they provide as they come along. This makes it easier to see ROI and ROO from your Big Data initiatives by managing Big Data in the same manner your organization treats all of its data – by understanding its metadata, defining its relationships, and defining its quality.

Furthermore, businesses that apply sound data governance will find themselves with a template or roadmap they can use to integrate Big Data throughout their organizations.

If your business isn’t capitalizing on the Big Data it’s collecting, then it’s throwing away dollars spent on data collection, storage and analysis. Just as bad, however, is a situation where all of that data and analysis is leading to the wrong decisions and poor business outcomes because the data isn’t properly governed.

Previous posts:

You can determine how effective your current data governance initiative is by taking erwin’s DG RediChek.

Categories
erwin Expert Blog

Data Governance Helps Build a Solid Foundation for Analytics

If your business is like many, it’s heavily invested in analytics. We’re living in a data-driven world. Data drives the recommendations we get from retailers, the coupons we get from grocers, and the decisions behind the products and services we’ll build and support at work.

None of the insights we draw from data are possible without analytics. We routinely slice, dice, measure and (try to) predict almost everything today because data is available to be analyzed. In theory, all this analysis should be helping the business. It should ensure we’re creating the right products and services, marketing them to the right people, and charging the right price. It should build a loyal base of customers who become brand ambassadors, amplifying existing marketing efforts to fuel more sales.

We hope all these things happen because all this analysis is expensive. It’s not just the cost of software licenses for the analytics software, but it’s also the people. Estimates for the average salary of data scientists, for example, can be upwards of $118,000 (Glassdoor) to $131,000 (Indeed). Many businesses also are exploring or already use next-generation analytics technology like predictive analytics or analytics supported by artificial intelligence or machine learning, which require even more investment.

If the underlying data your business is analyzing is bad, you’re throwing all this investment away. There’s a saying that scares everyone involved in analytics today: “Garbage in, garbage out.” When bad data is used to drive your strategic and operational decisions, your bad data suddenly becomes a huge problem for the business.

The goal, when it comes to the data you feed your analytics platforms, is what’s often referred to as the “single source of truth,” otherwise known as the data you can trust to analyze and create conclusions that drive your business forward.

“One source of truth means serving up consistent, high-quality data,” says Danny Sandwell, director of product marketing at erwin, Inc.

Despite all of the talk in the industry about data and analytics in recent years, many businesses still fail to reap the rewards of their analytics investments. In fact, Gartner reports that more than 60 percent of data and analytics projects fail. As with any software deployment, there are a number of reasons these projects don’t turn out the way they were planned. Among analytics, however, bad data can turn even a smooth deployment on the technology side into a disaster for the business.

What is bad data? It’s data that isn’t helping your business make the right decisions because it is:

  • Poor quality
  • Misunderstood
  • Incomplete
  • Misused

How Data Governance Helps Organizations Improve Their Analytics

More than one-quarter of the respondents to a November 2017 survey by erwin Inc. and UBM said analytics was one of the factors driving their data governance initiatives.

Reputation Management - What's Driving Data Governance

Data governance helps businesses understand what data they have, how good it is, where it is, and how it’s used. A lot of people are talking about data governance today, and some are putting that talk into action. The erwin-UBM survey found that 52 percent of respondents say data is critically important to their organization and they have a formal data governance strategy in place. But almost as many respondents (46 percent) say they recognize the value of data to their organizations but don’t have a formal governance strategy.

Data-driven Analytics: How Important is Data Governance

When data governance helps your organization develop high-quality data with demonstrated value, your IT organizations can build better analytics platforms for the business. Data governance helps enable self-service, which is an important part of analytics for many businesses today because it puts the power of data and analysis into the hands of the people who use the data on a daily basis. A well-functioning data governance program creates that single version of the truth by helping IT organizations identify and present the right data to users and eliminate confusion about the source or quality of the data.

Data governance also enables a system of best practices, subject matter experts, and collaboration that are the hallmarks of today’s analytics-driven businesses.

Like analytics, many early attempts at instituting data governance failed to deliver the expected results. They were narrowly focused, and their advocates often had difficulty articulating the value of data governance to the organization, which made it difficult to secure budget. Some organizations even viewed data governance as part of data security, securing their data to the point where the people who wanted to use it had trouble getting access.

Issues of ownership also hurt early data governance efforts, as IT and the business couldn’t agree on which side was responsible for a process that affects both on a regular basis. Today, organizations are better equipped to resolve these issues of ownership because many are adopting a new corporate structure that recognizes how important data is to modern businesses. Roles like chief data officer (CDO), which increasingly sits on the business side, and the data protection officer (DPO), are more common than they were a few years ago.

A modern data governance strategy weaves itself into the business and its infrastructure. It is present in the enterprise architecture, the business processes, and it helps organizations better understand the relationships between data assets using techniques like visualization. Perhaps most important, a modern approach to data governance is ongoing because organizations and their data are constantly changing and transforming, so their approach to data governance needs to adjust as they go.

When it comes to analytics, data governance is the best way to ensure you’re using the right data to drive your strategic and operational decisions. It’s easier said than done, especially when you consider all the data that’s flowing into a modern organization and how you’re going to sort through it all to find the good, the bad, and the ugly. But once you do, you’re on the way to using analytics to draw conclusions you can trust.

Previous posts:

You can determine how effective your current data governance initiative is by taking erwin’s DG RediChek.

Categories
erwin Expert Blog

Data Plays Huge Role in Reputation Management

How much does your business invest in reputation management? It’s likely no one in the organization knows for sure because every interaction – in person, online or over the phone – can affect your firm’s reputation. The quality of the goods and services your organization provides, the training it gives employees, and the causes and initiatives it supports all can improve or worsen its reputation.

Reputation management has always been important to businesses, but because information flows so quickly and freely today, reputations are more fragile than ever. Bad news travels fast; often much faster than businesses can respond. It’s also incredibly hard to make bad news go away. Social media and search engines crushed the concept of the news cycle because they make it easy for information to circulate, even long after incidents have occurred.

One of the fastest ways to see your organization’s reputation suffer today is to lose or expose sensitive data. A study in the U.K. found that 86 percent of customers would not do business with a company that failed to protect its customers’ credit card data.

But data theft isn’t the only risk. Facebook may not have even violated its user agreement in the Cambridge Analytica scandal, but reputations have a funny way of rising and falling on perception, not just facts.

It’s estimated that Walmart, for example, spent $18 million in 2016 and 2017 on advertising for retrospective reputation management, after suffering from a perception the company was anti-worker, fixated on profits, and selling too many foreign-made products.

Perception is why companies publicize their efforts to be good corporate citizens, whether it means supporting charities or causes, or discussing sustainability initiatives that are aimed at protecting the environment.

When you are perceived as having a good reputation, a number of positive things happen. For starters, you can invest $18 million in your business and your customers, instead of spending it on ads you hope will change people’s perceptions of your company. But good reputation management also helps create happy, loyal customers who in turn become brand advocates spreading the word about your company.

Data permeates this entire process. Successful reputation management shows up in the data your business collects. Data also will help identify the brand ambassadors who are helping you sell your products and services.  When something goes wrong, the problem might first appear – and be resolved – thanks to data. But what data giveth, data can taketh away.

A big part of building and maintaining a good reputation today means avoiding missteps like those suffered by Facebook, Equifax, Uber, Yahoo, Wells Fargo and many others. Executives clearly grasp the importance of understanding and governing their organization’s data assets. More than three-quarters of the respondents to a November 2017 survey by erwin, Inc. and UBM said understanding and governing data assets is important or very important to their executives.

Reputation Management - How Important is DG

A strong data governance practice gives businesses the needed visibility into their data – what they’re collecting, why they’re collecting it, who can access it, where it’s stored, how it’s used, and more. This visibility can help protect reputations because knowing what you have, how it’s used, and where it is helps improve data protection.

Having visibility into your data also enables transparency, which works in two ways. Internally, transparency means being able to quickly and accurately answer questions posed by executives, auditors or regulators. Customer-facing transparency means businesses have a single view of their customers, so they can quickly solve problems, answer questions, and help align the products and services most relevant to customer needs.

Both types of transparency help manage an organization’s reputation. Businesses with a well-developed strategy for data governance are less likely to be caught off guard by a data breach months after the fact, and are better positioned to deliver the modern, personalized, omnichannel customer experience today’s consumers crave.

The connection between data governance and reputation is well understood. The erwin-UBM study found that 30 percent of organizations cite reputation management as the primary driver of their data governance initiative.

Reputation Management - What's Driving Data Governance

But data governance is more than protecting data (and by extension, your reputation). It is, when done well, a practice that permeates the organization. Integrating your data governance strategy with your enterprise architecture, for example, helps you define application capabilities and interdependencies within the context of your overall strategy. It also adds a layer of protection for data beyond your Level 1 security (the passwords, firewalls, etc., we know are vulnerable).

Data governance with a business process and analysis component helps enterprises clearly define, map and analyze their workflows and build models to drive process improvement, as well as identify business practices susceptible to the greatest security, compliance or other risks and where controls are most needed to mitigate exposures.

For example, many businesses today are likely keeping too much data. A wave of accounting scandals in the early 2000s, most notably at Enron, led to regulations that included the need to preserve records and produce them in a timely manner. As a result, businesses started to store data like never before. Add to this new sources of data, like social media and sensors connected to the Internet of Things (IoT), and you have companies awash in data, paying (in some cases) more to store and protect it than it’s actually worth to their businesses.

When done well, data governance helps businesses make more informed decisions about data, such as whether the reward from the data they’re keeping is worth the risk and cost of storage.

“The further data gets from everyday use, it just sits on these little islands of risk,” says Danny Sandwell, director of product marketing for erwin.

All it takes is someone with bad intentions or improper training to airlift that data off the island and your firm’s reputation will crash and burn.

Alternatively, your organization can adopt data governance practices that will work to prevent data loss or misuse and enable faster remediation should a problem occur. Developing a reputation for “data responsibility” – from protecting data to transparency around its collection and use – is becoming a valuable differentiator. It’s entirely possible that as the number of data breaches and scandals continue to pile up, firms will start using their efforts toward data responsibility to enhance their reputation and appeal to customers, much in the way businesses talk about environmental sustainability initiatives.

A strong data governance foundation underpins data security and privacy. To learn more about how data governance will work for you, click here.

Examining the Data Trinity

 

Previous posts:

You can determine how effective your current data governance initiative is by taking erwin’s DG RediChek.

Categories
erwin Expert Blog

Why Data Governance is the Key to Better Decision-Making

The ability to quickly collect vast amounts of data, analyze it, and then use what you’ve learned to help foster better decision-making is the dream of many a business executive. But like any number of things that can be summarized in a single sentence, it’s much harder to execute on such a vision than it might first appear.

According to Forrester, 74 percent of firms say they want to be “data-driven,” but only 29 percent say they are good at connecting analytics to action. Consider this: Forrester found that business satisfaction with analytics dropped by 21 percent between 2014 and 2015 – a period of great promise and great investment in Big Data. In other words, the more data businesses were collecting and mining, the less happy they were with their analytics.

A number of factors are potentially at play here, including the analytics software, the culture of the business, and the skill sets of the people using the data. But your analytics applications and the conclusions you draw from your analysis are only as good as the data that is collected and analyzed. Collecting, safeguarding and mining large amounts of data isn’t an inexpensive exercise, and as the saying goes, “garbage in, garbage out.”

“It’s a big investment and if people don’t trust data, they won’t use things like business intelligence tools because they won’t have faith in what they tell them,” says Danny Sandwell, director of product marketing at erwin, Inc.

Using data to inform business decisions is hardly new, of course. The modern idea of market research dates back to the 1920s, and ever since businesses have collected, analyzed and drawn conclusions from information they draw from customers or prospective customers.

The difference today, as you might expect, is the amount of data and how it’s collected. Data is generated by machines large and small, by people, and by old-fashioned market research. It enters today’s businesses from all angles, at lightning speed, and can, in many cases, be available for instant analysis.

As the volume and velocity of data increases, overload becomes a potential problem. Unless the business has a strategic plan for data governance, decisions around where the data is stored, who and what can access it, and how it can be used, becomes increasingly difficult to understand.

Not every business collects massive amounts of data like Facebook and Yahoo, but recent headlines demonstrate how those companies’ inability to govern data is harming their reputations and bottom lines. For Facebook, it was the revelation that the data of 87 million users was improperly obtained to influence the 2016 U. S. presidential election. For Yahoo, the U.S. Securities and Exchange Commission (SEC) levied a $35 million fine for failure to disclose a data breach in a timely manner.

In both the Facebook and Yahoo cases, the misuse or failure to protect data was one problem. Their inability to quickly quantify the scope of the problem and disclose the details made a big issue even worse – and kept it in the headlines even longer.

The issues of data security, data privacy and data governance may not be top of mind for some business users, but these issues manifest themselves in a number of ways that affect what they do on a daily basis. Think of it this way: somewhere in all of the data your organization collects, a piece of information that can support or refute a decision you’re about to make is likely there. Can you find it? Can you trust it?

If the answer to these questions is “no,” then it won’t be easy for your organization to make data-driven decisions.

Better Decision-Making - Data Governance

Powering Better Decision-Making with Data Governance

Nearly half (45 percent) of the respondents to a November 2017 survey by erwin and UBM said better decision-making was one of the factors driving their data governance initiatives.

Data governance helps businesses understand what data they have, how good it is, where it is, and how it’s used. A lot of people are talking about data governance today, and some are putting that talk into action. The erwin/UBM survey found that 52 percent of respondents say data is critically important to their organization and they have a formal data governance strategy in place. But almost as many respondents (46 percent) say they recognize the value of data to their organization but don’t have a formal governance strategy.

Many early attempts at instituting data governance failed to deliver results. They were narrowly focused, and their proponents often had difficulty articulating the value of data governance to the organization, making it difficult to secure budget. Some organizations even understood data governance as a type of data security, locking up data so tightly that the people who wanted to use it to foster better decision-making had trouble getting access.

Issues of ownership also stymied early data governance efforts, as IT and the business couldn’t agree on which side was responsible for a process that affects both on a regular basis. Today, organizations are better equipped to resolve issues of ownership, thanks in large part to a new corporate structure that recognizes how important data is to modern businesses. Roles like chief data officer (CDO), which increasingly sits on the business side, and the data protection officer (DPO), are more common than they were a few years ago.

A modern data governance strategy works a lot like data itself – it permeates the business and its infrastructure. It is part of the enterprise architecture, the business processes, and it help organizations better understand the relationships between data assets using techniques like visualization. Perhaps most important, a modern approach to data governance is ongoing, because organizations and their data are constantly changing and transforming, so their approach to data governance can’t sit still.

As you might expect, better visibility into your data goes a long way toward using that data to make more informed decisions. There is, however, another advantage to the visibility offered by a holistic data governance strategy: it helps you better understand what you don’t know.

By helping businesses understand the areas where they can improve their data collection, data governance helps organizations continually work to create better data, which manifests itself in real business advantages, like better decision-making and top-notch customer experiences, all of which will help grow the business.

Michael Pastore is the Director, Content Services at QuinStreet B2B Tech. This content originally appeared as a sponsored post on http://www.eweek.com/.

Previous posts:

You can determine how effective your current data governance initiative is by taking erwin’s DG RediChek.

Take the DG RediChek

Categories
erwin Expert Blog

The Role of An Effective Data Governance Initiative in Customer Purchase Decisions

A data governance initiative will maximize the security, quality and value of data, all of which build customer trust.

Without data, modern business would cease to function. Data helps guide decisions about products and services, makes it easier to identify customers, and serves as the foundation for everything businesses do today. The problem for many organizations is that data enters from any number of angles and gets stored in different places by different people and different applications.

Getting the most out of your data requires that you know what you have, where you have it, and that you understand its quality and value to the organization. This is where data governance comes into play. You can’t optimize your data if it’s scattered across different silos and lurking in various applications.

For about 150 years, manufacturers relied on their machinery and its ability to run reliably, properly and safely, to keep customers happy and revenue flowing. A data governance initiative has a similar role today, except its aim is to maximize the security, quality and value of data instead of machinery.

Customers are increasingly concerned about the safety and privacy of their data. According to a survey by Research+Data Insights, 85 percent of respondents worry about technology compromising their personal privacy. In a survey of 2,000 U.S. adults in 2016, researchers from Vanson Bourne found that 76 percent of respondents said they would move away from companies with a high record of data breaches.

For years, buying decisions were driven mainly by cost and quality, says Danny Sandwell, director of product marketing at erwin, Inc. But today’s businesses must consider their reputations in terms of both cost/quality and how well they protect their customers’ data when trying to win business.

Once the reputation is tarnished because of a breach or misuse of data, customers will question those relationships.

Unfortunately for consumers, examples of companies failing to properly govern their data aren’t difficult to find. Look no further than Under Armour, which announced this spring that 150 million accounts at its MyFitnessPal diet and exercise tracking app were breached, and Facebook, where the data of millions of users was harvested by third parties hoping to influence the 2016 presidential election in the United States.

Customers Hate Breaches, But They Love Data

While consumers are quick to report concerns about data privacy, customers also yearn for (and increasingly expect) efficient, personalized and relevant experiences when they interact with businesses. These experiences are, of course, built on data.

In this area, customers and businesses are on the same page. Businesses want to collect data that helps them build the omnichannel, 360-degree customer views that make their customers happy.

These experiences allow businesses to connect with their customers and demonstrate how well they understand them and know their preferences, like and dislikes – essentially taking the personalized service of the neighborhood market to the internet.

The only way to manage that effectively at scale is to properly govern your data.

Delivering personalized service is also valuable to businesses because it helps turn customers into brand ambassadors, and it’s a fact that it’s much easier to build on existing customer relationships than to find new customers.

Here’s the upshot: If your organization is doing data governance right, it’s helping create happy, loyal customers, while at the same time avoiding the bad press and financial penalties associated with poor data practices.

Putting A Data Governance Initiative Into Action

The good news is that 76 percent of respondents to a November 2017 survey we conducted with UBM said understanding and governing the data assets in the organization was either important or very important to the executives in their organization. Nearly half (49 percent) of respondents said that customer trust/satisfaction was driving their data governance initiatives.

Importance of a data governance initiative

What stops organizations from creating an effective data governance initiative? At some businesses, it’s a cultural issue. Both the business and IT sides of the organization play important roles in data, with the IT side storing and protecting it, and the business side consuming data and analyzing it.

For years, however, data governance was the volleyball passed back and forth over the net between IT and the business, with neither side truly owning it. Our study found signs this is changing. More than half (57 percent) of the respondents said both and IT and the business/corporate teams were responsible for data in their organization.

Who's responsible for a data governance initiative

Once an organization understands that IT and the business are both responsible for data, it still needs to develop a comprehensive, holistic strategy for data governance that is capable of:

  • Reaching every stakeholder in the process
  • Providing a platform for understanding and governing trusted data assets
  • Delivering the greatest benefit from data wherever it lives, while minimizing risk
  • Helping users understand the impact of changes made to a specific data element across the enterprise.

To accomplish this, a modern data governance initiative needs to be interdisciplinary. It should include not only data governance, which is ongoing because organizations are constantly changing and transforming, but other disciples as well.

Enterprise architecture is important because it aligns IT and the business, mapping a company’s applications and the associated technologies and data to the business functions they enable.

By integrating data governance with enterprise architecture, businesses can define application capabilities and interdependencies within the context of their connection to enterprise strategy to prioritize technology investments so they align with business goals and strategies to produce the desired outcomes.

A business process and analysis component is also vital to modern data governance. It defines how the business operates and ensures employees understand and are accountable for carrying out the processes for which they are responsible.

Enterprises can clearly define, map and analyze workflows and build models to drive process improvement, as well as identify business practices susceptible to the greatest security, compliance or other risks and where controls are most needed to mitigate exposures.

Finally, data modeling remains the best way to design and deploy new relational databases with high-quality data sources and support application development.

Being able to cost-effectively and efficiently discover, visualize and analyze “any data” from “anywhere” underpins large-scale data integration, master data management, Big Data and business intelligence/analytics with the ability to synthesize, standardize and store data sources from a single design, as well as reuse artifacts across projects.

Michael Pastore is the Director, Content Services at QuinStreet B2B Tech. This content originally appeared as a sponsored post on http://www.eweek.com/.

Read the previous post on how compliance concerns and the EU’s GDPR are driving businesses to implement data governance.

Determine how effective your current data governance initiative is by taking our DG RediChek.

Take the DG RediChek

Categories
erwin Expert Blog

GDPR, Compliance Concerns Driving Data Governance Strategies

There are many factors driving data governance adoption, as revealed in erwin’s State of Data Governance Report. Over the coming weeks, we’ll be exploring them in detail, starting with regulatory compliance.

By Michael Pastore

Almost every organization views data governance as important, so why don’t they all have it in place?

Modern organizations run on data. Whether from sensors monitoring equipment on a factory floor or a customer’s purchasing history, data enters modern businesses from every angle, gets stored in any number of places, and is used by many different people and applications.

Data governance refers to the practices that help businesses understand where their data comes from, where it resides, how accurate it is, who or what can access it, and how it can be used. The idea of data governance is not new, but putting data governance into practice and reaping the benefits remains a struggle for many organizations.

According to our November 2017 survey with UBM, nearly all (98 percent) respondents said their organizations view data governance as either important or critically important from a business perspective. Despite this, 46 percent of respondents indicated their organizations recognize the value of data, but lack a formal governance strategy.

One of the significant obstacles to data governance for many organizations is the idea of ownership. In many businesses, it’s safe to say that the IT organization has ownership over the network, just as it’s easy to say that the business oversees payroll.

Data is a bit more complicated. The business side of the organization often analyzes the data, but it’s the IT organization that stores and protects it. This data division of labor often leaves data governance in a sort of no-man’s land, with each side expecting the other to pick up the torch.

The results of the erwin-UBM survey indicate that businesses are increasingly treating data governance as an enterprise-wide imperative. At 57 percent of respondents’ organizations, both IT and the business are responsible for data governance. Just 34 percent of the organizations put IT solely in charge.

Strong data governance initiatives will overcome the issue of ownership thanks in part to a new organizational structure that considers the importance of data. The emergence of the chief data officer (CDO) is one sign that businesses recognize the vital role of their data.

Many of the first generation of CDOs reported to the CIO. Now, you’re more likely to see the CDO at forward-thinking organizations sit on the business side, perhaps in the finance department, or even marketing, which is a huge consumer of data in many businesses. Under the CDO, it’s increasingly likely to find a data protection officer (DPO) tasked with overseeing how the business safeguards its information.

What's Driving Data Governance

Driving Data Governance: Compliance Is Leading Organizations to Data Governance

Now is a good time for businesses to re-think their data structure and governance initiatives. Data is central to organizations’ compliance, privacy and security initiatives because it has value — value to the business; value to the customer; and, like anything of value, value to criminals who want to get their hands on it.

The need to protect data and reduce risk is an important factor in driving data governance at many organizations. In fact, our survey found that regulatory compliance, cited by 60 percent of respondents, was the most popular factor driving data governance.

There’s an increased sense of urgency regarding data governance and compliance because of the European Union’s General Data Protection Regulation (GDPR), which goes into effect this month. According to our research, only 6 percent of respondents said their organization was “completely prepared” for the regulation.

Not only does the GDPR protect EU citizens at home, but it extends protections to EU citizens wherever they do business. It really goes much farther than any other legislation ever has.

The GDPR essentially gives rights to the people the data represents, so businesses must:

  • Minimize identifiability in data
  • Report data breaches within 72 hours
  • Give consumers the ability to dispute data and demand data portability
  • Understand the GDPR’s expanded definition of personally identifiable information (PII)
  • Extend to consumers the right to be “forgotten”

And much, much more.

The maximum fine for organizations in breach of the GDPR is up to 4 percent of annual global turnover or €20 million, whichever is greater. And because the GDPR will apply to anyone doing business with EU citizens, and the internet transcends international borders, it’s likely the GDPR will become the standard organizations around the world will need to rise to meet.

The GDPR is a hot topic right now, but it’s not the only data-security regulation organizations have to honor. In addition to Payment Card Industry (PCI) standards for payment processors, industry-specific regulations exist in such areas as financial services, healthcare and education.

This web of regulations brings us back to data governance. Simply put, it’s easier to protect data and mitigate a breach if your organization knows where the data comes from, where it is stored, and what it includes.

Businesses stand to gain a number of advantages by implementing strong data governance. Regulatory compliance is sure to get the attention of C-level executives, the legal team and the board, but it means very little to consumers – until there’s a breach.

With new breaches being reported on a seemingly daily basis, businesses that practice strong data governance can help build a competitive advantage by better protecting their data and gaining a reputation as an organization that can be trusted in a way that firms suffering from high-profile breaches cannot. In this way, data governance helps contribute directly to the bottom line.

Still, compliance is the No. 1 factor driving data governance initiatives for a reason.

Using data governance to drive upside growth is great, but not if you’re going to lose money in fines.

In our next post in this series, we’ll explore how your organization can use data governance to build trust with your customers.

 

Michael Pastore is the Director, Content Services at QuinStreet B2B Tech. This content originally appeared as a sponsored post on http://www.eweek.com/.

Learn more about how data governance can help with GDPR compliance by downloading the free white paper: GDPR and Your Business: A Call to Enhance Data Governance Expertise.

Data Governance and GDPR: GDPR and Your Business Whitepaper